Let D = {b, a, c, k}, E = {t, a, s, k}, F = {b, a, t, h}. Using these sets, find the following:
Dc ⋂ E
Fc ⋂ D
(

Let D = {b, a, c, k}, E = {t, a, s, k}, F = {b, a, t, h}. Using these sets, find the following:
Dc ⋂ E
Fc ⋂ D
(D ⋂ E) ⋃ F
D ⋂ (E ⋃ F)
(F ⋂ E)c ⋂ D
(D ⋃ E)c ⋂ F

About the author
Eliza

1 thought on “Let D = {b, a, c, k}, E = {t, a, s, k}, F = {b, a, t, h}. Using these sets, find the following: <br /> Dc ⋂ E<br /> Fc ⋂ D<br /> (”

  1. [tex] \: \huge\bf\underline \red{\underline{Answer}}[/tex]

    Given:

    • D = {b, a, c, k}
    • E = {t, a, s, k}
    • F = {b, a, t, h}

    To Find:

    • Dc ⋂ E
    • Fc ⋂ D
    • (D ⋂ E) ⋃ F
    • D ⋂ (E ⋃ F)
    • (F ⋂ E)c ⋂ D
    • (D ⋃ E)c ⋂ F

    Solution:

    • Dc ⋂ E

    [tex]Dc ∩ E = \: \{ elements \: in \: E \: but \: not \: in \: D \} =\{ { t, s }\}[/tex]

    • Fc ∩ D

    [tex]Fc ∩ D = \{ elements \: in \: D \: \: but \: not \: in \: F \} = \{ c, k \}[/tex]

    • (D ⋂ E) ⋃ F

    [tex]( D ∩ E ) ∪ F = { a, k } ∪ F = \{ b, a, t, h, k \}[/tex]

    • D ⋂ (E ⋃ F)

    [tex]D ∩ ( E ∪ F ) = D ∩ \{ t, a, s, k, b, h \} = \{ b, a, t, h \}[/tex]

    • (F ⋂ E)c ⋂ D

    [tex]( F ∩ E )c ∩ D = \{ t, a \}c ∩ D =\{ b, c, k \}[/tex]

    • (D ⋃ E)c ⋂ F

    [tex]( D ∪ E )c ∩ F = \{ b, a, c, k, t, s\}c ∩ F = \{ b, a, t \}[/tex]

    Reply

Leave a Comment