Answer: 1. [tex](5x + 11 {y}^{2} )(5x – 11 {y}^{2}) [/tex] 2. [tex](x + 1)(x – 6)[/tex] Step-by-step explanation: 1. We have [tex]25 {x}^{2} – 121 {y}^{4} \\ = {(5x)}^{2} – {(11 {y}^{2} )}^{2} \\ = (5x + 11 {y}^{2} )(5x – 11 {y}^{2} )[/tex] Using (a + b)(a – b) formula 2. We have [tex] {x}^{2} – 5x – 6 \\ = {x}^{2} – 6x + x – 6 \\ = x(x – 6) + 1(x – 6) \\ = (x + 1)(x – 6)[/tex] Reply
Answer:
1.
[tex](5x + 11 {y}^{2} )(5x – 11 {y}^{2}) [/tex]
2.
[tex](x + 1)(x – 6)[/tex]
Step-by-step explanation:
1. We have
[tex]25 {x}^{2} – 121 {y}^{4} \\ = {(5x)}^{2} – {(11 {y}^{2} )}^{2} \\ = (5x + 11 {y}^{2} )(5x – 11 {y}^{2} )[/tex]
Using (a + b)(a – b) formula
2. We have
[tex] {x}^{2} – 5x – 6 \\ = {x}^{2} – 6x + x – 6 \\ = x(x – 6) + 1(x – 6) \\ = (x + 1)(x – 6)[/tex]