if α and β are the roots of the equation 375x² – 25x -2 = 0 then
[tex]\displaystyle \lim_{\sf n\to \infty }\sum^{n}_{r=1}\a

if α and β are the roots of the equation 375x² – 25x -2 = 0 then
[tex]\displaystyle \lim_{\sf n\to \infty }\sum^{n}_{r=1}\alpha^r + \lim_{\sf n\to \infty }\sum^{n}_{r=1}\beta^r[/tex]
is equal to

About the author
Vivian

2 thoughts on “if α and β are the roots of the equation 375x² – 25x -2 = 0 then <br /> [tex]\displaystyle \lim_{\sf n\to \infty }\sum^{n}_{r=1}\a”

  1. The roots of the equation [tex]375x^2-25x-2=0[/tex] are,

    [tex]\longrightarrow x=\dfrac{25\pm\sqrt{(-25)^2-(4\times375\times(-2))}}{2\times375}[/tex]

    [tex]\longrightarrow x=\dfrac{25\pm\sqrt{3625}}{750}[/tex]

    [tex]\longrightarrow x=\dfrac{5\pm\sqrt{145}}{150}[/tex]

    So,

    • [tex]\alpha=\dfrac{5+\sqrt{145}}{150}[/tex]
    • [tex]\beta=\dfrac{5-\sqrt{145}}{150}[/tex]

    We see [tex]|\alpha|<1,\ |\beta|<1[/tex] also.

    Then,

    [tex]\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\alpha^r=\lim_{n\to\infty}\sum_{r=1}^n\left(\dfrac{5+\sqrt{145}}{150}\right)^r[/tex]

    The sum actually represents an infinite geometric series of first term [tex]\alpha[/tex] and common ratio also [tex]\alpha.[/tex]

    We have the formula for infinite geometric series, that for [tex]|k|<1,[/tex]

    [tex]\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^nak^{r-1}=\dfrac{a}{1-k}[/tex]

    Here [tex]a[/tex] is first term and [tex]k[/tex] is common ratio.

    If [tex]a=k[/tex] then,

    [tex]\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^nk^r=\dfrac{k}{1-k}[/tex]

    Thus,

    [tex]\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\alpha^r=\dfrac{\frac{5+\sqrt{145}}{150}}{1-\frac{5+\sqrt{145}}{150}}[/tex]

    [tex]\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\alpha^r=\dfrac{5+\sqrt{145}}{145-\sqrt{145}}[/tex]

    Similarly,

    [tex]\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\lim_{n\to\infty}\sum_{r=1}^n\left(\dfrac{5-\sqrt{145}}{150}\right)^r[/tex]

    [tex]\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\dfrac{\frac{5-\sqrt{145}}{150}}{1-\frac{5-\sqrt{145}}{150}}[/tex]

    [tex]\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\dfrac{5-\sqrt{145}}{145+\sqrt{145}}[/tex]

    Now,

    [tex]\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\alpha^r+\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\dfrac{5+\sqrt{145}}{145-\sqrt{145}}+\dfrac{5-\sqrt{145}}{145+\sqrt{145}}[/tex]

    [tex]\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\alpha^r+\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\dfrac{2(145\times5+145)}{145^2-145}[/tex]

    [tex]\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\alpha^r+\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\dfrac{2\times145\times6}{145\times144}[/tex]

    [tex]\displaystyle\longrightarrow\underline{\underline{\lim_{n\to\infty}\sum_{r=1}^n\alpha^r+\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\dfrac{1}{12}}}[/tex]

    Hence 1/12 is the answer.

    Reply

Leave a Comment