Find the midpoint of a line segment PQ if the co-ordinates of P and Q are(-5, 7)and (-3, 9) respecitvely. About the author Athena
Answer: (-4+7) Step-by-step explanation: (x, y) consider as midpoint of pQ p=(x1, y2)=(-5,7) Q=(x2, y2)=(-3,9) [tex]x = \frac{ ( – 3 + – 5)}{2} = \frac{( – 8)}{2} = – 4[/tex] [tex]y =\frac{9 + 7}{2} = \frac{16}{2} = 8[/tex] (x,y)=(-4,8) [tex](x,y)=(-4,8)[/tex] Reply
Answer: (-4,8) Step-by-step explanation: midpoint (x,y) =[ (x1 +X2)/2 ,( y1+y2)/2 ] = [ (-5-3)/2, (7+9)/2] = [-8/2, 16/2] = (-4,8) Reply
Answer:
(-4+7)
Step-by-step explanation:
(x, y) consider as midpoint of pQ
p=(x1, y2)=(-5,7)
Q=(x2, y2)=(-3,9)
[tex]x = \frac{ ( – 3 + – 5)}{2} = \frac{( – 8)}{2} = – 4[/tex]
[tex]y =\frac{9 + 7}{2} = \frac{16}{2} = 8[/tex]
(x,y)=(-4,8)
[tex](x,y)=(-4,8)[/tex]
Answer:
(-4,8)
Step-by-step explanation:
midpoint (x,y) =[ (x1 +X2)/2 ,( y1+y2)/2 ]
= [ (-5-3)/2, (7+9)/2]
= [-8/2, 16/2]
= (-4,8)