Find the sum of 31.489 and the number got by inter changing 1 by 10 th place and 1 by 100 th place of this number About the author Sarah
Answer: Let the unit place digit of a two-digit number be x. Therefore, the tens place digit = 9-x \because∵ 2-digit number = 10 x tens place digit + unit place digit \therefore∴ Original number = 10(9-x)+x According to the question, New number = Original number + 27 \Rightarrow10x+\left(9-x\right)=10\left(9-x\right)+x+27⇒10x+(9−x)=10(9−x)+x+27 \Rightarrow10+9-x=90-10x+x+27⇒10+9−x=90−10x+x+27 \Rightarrow9x+9=117-9x⇒9x+9=117−9x \Rightarrow9x+9x=117-9⇒9x+9x=117−9 \Rightarrow18x=108⇒18x=108 \Rightarrow x=\frac{108}{18}=6⇒x= 18 108 =6 Hence, the 2-digit number = 10(9-x)+x = 10(9-6)+6 = 10 x 3 + 6 = 30 + 6 = 36 Reply
Answer:
Let the unit place digit of a two-digit number be x.
Therefore, the tens place digit = 9-x
\because∵ 2-digit number = 10 x tens place digit + unit place digit
\therefore∴ Original number = 10(9-x)+x
According to the question, New number
= Original number + 27
\Rightarrow10x+\left(9-x\right)=10\left(9-x\right)+x+27⇒10x+(9−x)=10(9−x)+x+27
\Rightarrow10+9-x=90-10x+x+27⇒10+9−x=90−10x+x+27
\Rightarrow9x+9=117-9x⇒9x+9=117−9x
\Rightarrow9x+9x=117-9⇒9x+9x=117−9
\Rightarrow18x=108⇒18x=108
\Rightarrow x=\frac{108}{18}=6⇒x=
18
108
=6
Hence, the 2-digit number = 10(9-x)+x = 10(9-6)+6 = 10 x 3 + 6 = 30 + 6 = 36