If x² +y² =13xy and 2 log ( x + y) = log k + log l+ log x + log y where k and l are real, then the value of (k+I) is About the author Serenity
Correct question: If x² + y² = 13xy and 2log(x + y) = log(k) + log(l)+ log(x) + log(y) where k and l are integers, then the value of (k+I) is: (Real numbers will have infinite solutions as that would include non integers, as well as integers.) [tex]\\[/tex] Answer: Given that, [tex]x^2+y^2=13xy[/tex] Adding [tex]2xy[/tex] to both sides, [tex]\longrightarrow x^2+y^2+2xy=13xy+2xy[/tex] [tex]\longrightarrow (x+y)^2=15xy\quad\quad\dots(1)[/tex] And it is also given that, [tex]2\log(x+y)=\log(k)+\log(l)+\log(x)+\log(y)[/tex] [tex]\longrightarrow \log\{(x+y)^2\}=\log(kl)+\log(xy)[/tex] From (1), [tex]\longrightarrow \log(15xy)=\log(kl)+\log(xy)[/tex] [tex]\longrightarrow \log(15xy)-\log(xy)=\log(kl)[/tex] [tex]\longrightarrow \log\bigg(\dfrac{15xy}{xy}\bigg)=\log(kl)[/tex] [tex]\longrightarrow \log(15)=\log(kl)[/tex] Taking antilog, [tex]\longrightarrow kl=15[/tex] Now we have a Diophantine Equation: [tex]kl=15\:\:\forall\:\:k,l\in\mathbb{Z}[/tex] So, possible pairs include, [tex]k=5, l=3[/tex] [tex]k=-5, l=-3[/tex] Hence, the value of [tex](k+l)[/tex] can be, [tex]k+l=5+3=8[/tex] [tex]k+l=(-5)+(-3)=-8[/tex] So, the answer is, [tex]\longrightarrow \underline{\underline{k+l=8\:or\:-8}}[/tex] Reply
Correct question:
If x² + y² = 13xy and 2log(x + y) = log(k) + log(l)+ log(x) + log(y) where k and l are integers, then the value of (k+I) is:
(Real numbers will have infinite solutions as that would include non integers, as well as integers.)
[tex]\\[/tex]
Answer:
Given that,
[tex]x^2+y^2=13xy[/tex]
Adding [tex]2xy[/tex] to both sides,
[tex]\longrightarrow x^2+y^2+2xy=13xy+2xy[/tex]
[tex]\longrightarrow (x+y)^2=15xy\quad\quad\dots(1)[/tex]
And it is also given that,
[tex]2\log(x+y)=\log(k)+\log(l)+\log(x)+\log(y)[/tex]
[tex]\longrightarrow \log\{(x+y)^2\}=\log(kl)+\log(xy)[/tex]
From (1),
[tex]\longrightarrow \log(15xy)=\log(kl)+\log(xy)[/tex]
[tex]\longrightarrow \log(15xy)-\log(xy)=\log(kl)[/tex]
[tex]\longrightarrow \log\bigg(\dfrac{15xy}{xy}\bigg)=\log(kl)[/tex]
[tex]\longrightarrow \log(15)=\log(kl)[/tex]
Taking antilog,
[tex]\longrightarrow kl=15[/tex]
Now we have a Diophantine Equation:
[tex]kl=15\:\:\forall\:\:k,l\in\mathbb{Z}[/tex]
So, possible pairs include,
Hence, the value of [tex](k+l)[/tex] can be,
So, the answer is,
[tex]\longrightarrow \underline{\underline{k+l=8\:or\:-8}}[/tex]