the angels of the triangle are in A.P. if the smallest angel is 36°,then the measure of the other angels are About the author Natalia
[tex]\large\underline{\bold{Given \:Question – }}[/tex] The angles of the triangle are in A.P. If the smallest angle is 36°, then the measure of the other angless are ___ [tex]\large\underline{\sf{Solution-}}[/tex] Since, angles of a triangle are in A. P. So, [tex]\begin{gathered}\begin{gathered}\bf \:Let \: the \: angles \: be – \begin{cases} &\sf{(a – d) \degree \: } \\ &\sf{a\degree \:} \\ &\sf{(a + d)\degree \:} \end{cases}\end{gathered}\end{gathered}[/tex] We know, Sum of angles of a triangle is 180°. Therefore, [tex]\rm :\longmapsto\:a – \cancel d \: + \: a \: + a – \cancel d = 180[/tex] [tex]\rm :\longmapsto\:3a = 180[/tex] [tex]\bf\implies \:a \: = \: 60\degree \: – – (1)[/tex] Now, Smallest angle of a triangle is 36°. [tex]\rm :\implies\:a – d = 36[/tex] [tex]\rm :\longmapsto\:60 – d = 36 \: \: \: \: \: \: \: \: \{using \: (1) \: \}[/tex] [tex]\rm :\longmapsto\:d = 60 – 36[/tex] [tex]\bf\implies \:d \: = \: 24\degree \:[/tex] [tex]\begin{gathered}\begin{gathered}\bf \:Hence, \: the \: angles \: are – \begin{cases} &\sf{a – d = 60 – 24 = 36 \degree \: } \\ &\sf{a = 60\degree \:} \\ &\sf{a + d= 60 + 24 = 84\degree \:} \end{cases}\end{gathered}\end{gathered}[/tex] Additional Information :- ↝ nᵗʰ term of an arithmetic sequence is, [tex]\begin{gathered}\bigstar\:\:{\underline{{\boxed{\bf{{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}[/tex] Wʜᴇʀᴇ, aₙ is the nᵗʰ term. a is the first term of the sequence. n is the no. of terms. d is the common difference. ↝Sₙ (Sum of first n terms) of an arithmetic sequence is, [tex]\begin{gathered}\bigstar\:\:{\underline{{\boxed{\bf{{S_n\:= \: \dfrac{n}{2} \: (2\: a\:+\:(n\:-\:1)\:d)}}}}}} \\ \end{gathered}[/tex] Wʜᴇʀᴇ, Sₙ is the sum of first n terms. a is the first term of the sequence. n is the no. of terms. d is the common difference. Reply
[tex]\large\underline{\bold{Given \:Question – }}[/tex]
The angles of the triangle are in A.P. If the smallest angle is 36°, then the measure of the other angless are ___
[tex]\large\underline{\sf{Solution-}}[/tex]
So,
[tex]\begin{gathered}\begin{gathered}\bf \:Let \: the \: angles \: be – \begin{cases} &\sf{(a – d) \degree \: } \\ &\sf{a\degree \:} \\ &\sf{(a + d)\degree \:} \end{cases}\end{gathered}\end{gathered}[/tex]
We know,
Therefore,
[tex]\rm :\longmapsto\:a – \cancel d \: + \: a \: + a – \cancel d = 180[/tex]
[tex]\rm :\longmapsto\:3a = 180[/tex]
[tex]\bf\implies \:a \: = \: 60\degree \: – – (1)[/tex]
Now,
[tex]\rm :\implies\:a – d = 36[/tex]
[tex]\rm :\longmapsto\:60 – d = 36 \: \: \: \: \: \: \: \: \{using \: (1) \: \}[/tex]
[tex]\rm :\longmapsto\:d = 60 – 36[/tex]
[tex]\bf\implies \:d \: = \: 24\degree \:[/tex]
[tex]\begin{gathered}\begin{gathered}\bf \:Hence, \: the \: angles \: are – \begin{cases} &\sf{a – d = 60 – 24 = 36 \degree \: } \\ &\sf{a = 60\degree \:} \\ &\sf{a + d= 60 + 24 = 84\degree \:} \end{cases}\end{gathered}\end{gathered}[/tex]
Additional Information :-
↝ nᵗʰ term of an arithmetic sequence is,
[tex]\begin{gathered}\bigstar\:\:{\underline{{\boxed{\bf{{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}[/tex]
Wʜᴇʀᴇ,
↝Sₙ (Sum of first n terms) of an arithmetic sequence is,
[tex]\begin{gathered}\bigstar\:\:{\underline{{\boxed{\bf{{S_n\:= \: \dfrac{n}{2} \: (2\: a\:+\:(n\:-\:1)\:d)}}}}}} \\ \end{gathered}[/tex]
Wʜᴇʀᴇ,