The Angles pf ∆PQR are In the ratio 1 : 2 : 3. Find all the Angles of the triangle. About the author Raelynn
[tex] \: \huge\colorbox{pink}{Question}[/tex] The Angles pf ∆PQR are In the ratio 1 : 2 : 3. Find all the Angles of the triangle. [tex] \: \huge\colorbox{pink}{Answer}[/tex] Let the angle of ∆PQR be x, 2x and 3x Since, sum of the angle of a triangle is 180° [tex] ∴ \: \: \: \: \: \: \: x + 2x + 3x = 180°[/tex] [tex] \: ⇒ \: \: \: \: \: \: \: \: \: \: \: 6x = 180°[/tex] [tex] \: ⇒ \: \: \: \: \: \: \: \: \: \: \: x = 30°[/tex] Also, [tex] \: \: \: \: \: \: 2x = 30°[/tex] And [tex] \: \: \ \: \: \: 3x = 90°[/tex] Hence, the Angles of ∆PQR are 30°,60° and 90° Reply
Answer: sum of angles of a triangle is always 180°. Let’s take the angles to be 1x : 2x : 3x. 1x + 2x + 3x = 180° 6x = 180° x = 180 6 x = 30 1x = 30° 2x = 30 × 2 = 60° 3x = 30 × 3 = 90° PLEASE MARK AS BRAINLIEST. Reply
[tex] \: \huge\colorbox{pink}{Question}[/tex]
The Angles pf ∆PQR are In the ratio 1 : 2 : 3. Find all the Angles of the triangle.
[tex] \: \huge\colorbox{pink}{Answer}[/tex]
Let the angle of ∆PQR be x, 2x and 3x
Since, sum of the angle of a triangle is 180°
[tex] ∴ \: \: \: \: \: \: \: x + 2x + 3x = 180°[/tex]
[tex] \: ⇒ \: \: \: \: \: \: \: \: \: \: \: 6x = 180°[/tex]
[tex] \: ⇒ \: \: \: \: \: \: \: \: \: \: \: x = 30°[/tex]
Also,
[tex] \: \: \: \: \: \: 2x = 30°[/tex]
And
[tex] \: \: \ \: \: \: 3x = 90°[/tex]
Hence, the Angles of ∆PQR are 30°,60° and 90°
Answer:
sum of angles of a triangle is always 180°.
Let’s take the angles to be 1x : 2x : 3x.
1x + 2x + 3x = 180°
6x = 180°
x = 180
6
x = 30
1x = 30°
2x = 30 × 2 = 60°
3x = 30 × 3 = 90°
PLEASE MARK AS BRAINLIEST.