Go In an AP. the first term is -5 and the lastform is 45. If the sum of all numbers in theA-Pjs 120, then bow many terms are there?What is the common difference? About the author Alice
Answer: Given: First term, a= -5 Last term, [tex]a_{n}[/tex] = 45 Sum of all the terms, [tex]S_{n}[/tex]= 120 To find : The number of terms Proof: Let the number of terms= n According to the question, [tex]S_{n}[/tex] = [tex]\frac{n}{2}[/tex] ( a+ [tex]a_{n}[/tex] ) Substituting the values, we get: = 120 = [tex]\frac{n}{2}[/tex] ( -5 +45 ) ⇒ 120 = [tex]\frac{n}{2}[/tex] (40) ⇒ 120 = n (20) ⇒ n = [tex]\frac{120}{20}[/tex] ⇒ n = 6 ∴ Number of terms in the given A.P. = n = 6 Now, [tex]a_{n}[/tex] = 45 (Given) But, [tex]a_{n}[/tex] = a +(n-1) d Where a= first term [tex]a_{n}[/tex] = last term n= total number of terms d = common difference. Substituting the values in the equation, we get: = 45 = -5 + (6-1) d ⇒ 45 +5 = 5d ⇒ 50 = 5d ⇒ d= [tex]\frac{50}{5}[/tex] ⇒ d = 10 ∴ The common difference = d= 10 Hence, number of terms = n= 6 and the common difference = d = 10 Proved. Hope you got that. Thank You. Reply
Answer:
Given:
To find : The number of terms
Proof:
Let the number of terms= n
According to the question,
[tex]S_{n}[/tex] = [tex]\frac{n}{2}[/tex] ( a+ [tex]a_{n}[/tex] )
Substituting the values, we get:
= 120 = [tex]\frac{n}{2}[/tex] ( -5 +45 )
⇒ 120 = [tex]\frac{n}{2}[/tex] (40)
⇒ 120 = n (20)
⇒ n = [tex]\frac{120}{20}[/tex]
⇒ n = 6
∴ Number of terms in the given A.P. = n = 6
Now,
[tex]a_{n}[/tex] = 45 (Given)
But,
[tex]a_{n}[/tex] = a +(n-1) d
Where
Substituting the values in the equation, we get:
= 45 = -5 + (6-1) d
⇒ 45 +5 = 5d
⇒ 50 = 5d
⇒ d= [tex]\frac{50}{5}[/tex]
⇒ d = 10
∴ The common difference = d= 10
Hence, number of terms = n= 6
and the common difference = d = 10
Proved.
Hope you got that.
Thank You.