Answer: answer : hence , it is proved that LHS = RHS answer is 124 hope it helps plz mark as brainliest have a great day Reply
ANSWER Given: a + b + c = 1 a² + b² + c² = 83 To Find: Value of a³ + b³ + c³ – 3abc Solution: We are given that, ⇒ a² + b² + c² = 83————(1) ⇒ a + b + c = 1 ——–(2) So, ⇒ c = 1 – a – b ——–(3) Putting the value of ‘c’ from (3) into (1) ⇒ a² + b² + (1 – a – b)² = 83 ⇒ a² + b² + (1 + a² + b² – 2a – 2b + 2ab ) = 83 ⇒ a² + b² + a² + b² – 2a – 2b + 2ab = 82 ⇒ 2a² + 2b² – 2a – 2b + 2ab = 82 ⇒ a² + b² – a – b + ab = 41———–(4) We know that, ⇒ a³ + b³ + c³ – 3abc = (a + b + c)(a² + b² + c²- ab – bc – ca) From (1), (2) and (3) ⇒ a³ + b³ + c³ – 3abc = (1)[83+ (- ab – b(1 – a – b) – (1 – a – b)a)] ⇒ a³ + b³ + c³ – 3abc = 83 + (- ab – b + ab + b² – a + a² + ab) ⇒ a³ + b³ + c³ – 3abc = 83 + (a²+ b² – a – b + ab) From (4), ⇒ a³ + b³ + c³ – 3abc = 83 + 41 ⇒ a³ + b³ + c³ – 3abc = 124 Formula Used: a³ + b³ + c³ – 3abc = (a + b + c)(a² + b² + c²- ab – bc – ca) Learn More: [tex]\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identities}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\bf\: (A-B)^{2} = A^{2} – 2AB + B^{2}\\\\3)\bf\: A^{2} – B^{2} = (A+B)(A-B)\\\\4)\bf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} – 4AB\\\\6)\bf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} – 3AB(A-B) – B^{3}\\\\8)\bf\: A^{3} + B^{3} = (A+B)(A^{2} – AB + B^{2})\\\\9)\bf\: A^{3} – B^{3} = (A-B)(A^{2} + AB + B^{2})\\\\ \end{minipage}} [/tex] Reply
Answer:
answer :
hence , it is proved that LHS = RHS
answer is 124
hope it helps
plz mark as brainliest
have a great day
ANSWER
Given:
To Find:
Solution:
We are given that,
⇒ a² + b² + c² = 83————(1)
⇒ a + b + c = 1 ——–(2)
So,
⇒ c = 1 – a – b ——–(3)
Putting the value of ‘c’ from (3) into (1)
⇒ a² + b² + (1 – a – b)² = 83
⇒ a² + b² + (1 + a² + b² – 2a – 2b + 2ab ) = 83
⇒ a² + b² + a² + b² – 2a – 2b + 2ab = 82
⇒ 2a² + 2b² – 2a – 2b + 2ab = 82
⇒ a² + b² – a – b + ab = 41———–(4)
We know that,
⇒ a³ + b³ + c³ – 3abc = (a + b + c)(a² + b² + c²- ab – bc – ca)
From (1), (2) and (3)
⇒ a³ + b³ + c³ – 3abc = (1)[83+ (- ab – b(1 – a – b) – (1 – a – b)a)]
⇒ a³ + b³ + c³ – 3abc = 83 + (- ab – b + ab + b² – a + a² + ab)
⇒ a³ + b³ + c³ – 3abc = 83 + (a²+ b² – a – b + ab)
From (4),
⇒ a³ + b³ + c³ – 3abc = 83 + 41
⇒ a³ + b³ + c³ – 3abc = 124
Formula Used:
Learn More:
[tex]\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identities}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\bf\: (A-B)^{2} = A^{2} – 2AB + B^{2}\\\\3)\bf\: A^{2} – B^{2} = (A+B)(A-B)\\\\4)\bf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} – 4AB\\\\6)\bf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} – 3AB(A-B) – B^{3}\\\\8)\bf\: A^{3} + B^{3} = (A+B)(A^{2} – AB + B^{2})\\\\9)\bf\: A^{3} – B^{3} = (A-B)(A^{2} + AB + B^{2})\\\\ \end{minipage}} [/tex]