[tex]\large\underline{\bold{Correct \:Question – }}[/tex] [tex] \sf \: Prove \: that \: \dfrac{cosA}{1 – tanA} + \dfrac{sinA}{1 – cotA} = sinA \: + \: cosA[/tex] [tex]\large\underline{\sf{Solution-}}[/tex] Consider LHS, [tex] \sf \: \dfrac{cosA}{1 – tanA} + \dfrac{sinA}{1 – cotA}[/tex] We know, [tex] \boxed{ \bf{ \: tanA = \dfrac{sinA}{cosA} }}[/tex] and [tex] \boxed{ \bf{ \: cotA = \dfrac{cosA}{sinA} }}[/tex] So, LHS can be rewritten as [tex] \sf \: = \: \dfrac{cosA}{1 – \dfrac{sinA}{cosA} } + \dfrac{sinA}{1 – \dfrac{cosA}{sinA} }[/tex] [tex] \sf \: = \: \dfrac{cosA}{\dfrac{cosA – sinA}{cosA} } + \dfrac{sinA}{\dfrac{sinA – cosA}{sinA} }[/tex] [tex] \sf \: = \: \dfrac{ {cos}^{2}A }{cosA – sinA} + \dfrac{ {sin}^{2} A}{sinA – cosA} [/tex] [tex] \sf \: = \: \dfrac{ {cos}^{2}A }{cosA – sinA} – \dfrac{ {sin}^{2} A}{cosA – sinA} [/tex] [tex] \sf \: = \: \dfrac{ {cos}^{2}A – {sin}^{2}A }{cosA – sinA} [/tex] [tex] \sf \: = \: \dfrac{(cosA + sinA) \cancel{(cosA – sinA)}}{ \cancel{(cosA – sinA)}} \: \: \{ \because{a}^{2} – {b}^{2} = (a + b)(a – b) \}[/tex] [tex] \sf \: = \: cosA + sinA[/tex] [tex] \sf \: = \: RHS[/tex] [tex]{\boxed{\boxed{\bf{Hence, Proved}}}}[/tex] Additional Information:- Relationship between sides and T ratios sin θ = Opposite Side/Hypotenuse cos θ = Adjacent Side/Hypotenuse tan θ = Opposite Side/Adjacent Side sec θ = Hypotenuse/Adjacent Side cosec θ = Hypotenuse/Opposite Side cot θ = Adjacent Side/Opposite Side Reciprocal Identities cosec θ = 1/sin θ sec θ = 1/cos θ cot θ = 1/tan θ sin θ = 1/cosec θ cos θ = 1/sec θ tan θ = 1/cot θ Co-function Identities sin (90°−x) = cos x cos (90°−x) = sin x tan (90°−x) = cot x cot (90°−x) = tan x sec (90°−x) = cosec x cosec (90°−x) = sec x Fundamental Trigonometric Identities sin²θ + cos²θ = 1 sec²θ – tan²θ = 1 cosec²θ – cot²θ = 1 Reply
Appropriate Question : Prove that : [tex]\longmapsto \:\:\bf \dfrac{ Cos A }{1 – Tan A } – \dfrac{Sin A }{1- Cot A } = (Sin A + Cos A ) \\ \\ \\ [/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Given : [tex]\longmapsto \:\:\bf \dfrac{ Cos A }{1 – Tan A } – \dfrac{Sin A }{1- Cot A } = (Sin A + Cos A ) \\ \\ \\ [/tex] Exigency To Prove : [tex]\longmapsto \:\:\sf \dfrac{ Cos A }{1 – Tan A } – \dfrac{Sin A }{1- Cot A } = (Sin A + Cos A ) \\ \\ \\ [/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ [tex]\qquad \quad \bigstar\:\: \:\:\bf \dfrac{ Cos A }{1 – Tan A } – \dfrac{Sin A }{1- Cot A } = (Sin A + Cos A ) \\ \\ \\ [/tex] Here , [tex]\longmapsto \:\bf{L.H.S}\:=\:\sf \dfrac{ Cos A }{1 – Tan A } – \dfrac{Sin A }{1- Cot A } \\ \\ \\ [/tex] [tex]\longmapsto \:\bf{R.H.S}\:=\:\sf Sin A + Cos A \\ \\ \\ [/tex] ⠀⠀⠀⠀⠀⠀[tex]\underline {\frak{\star\:Now \: By \: Solving \: \: Given \: L.H.S \::}}\\[/tex] [tex]\longmapsto \:\bf{L.H.S}\:=\:\sf \dfrac{ Cos A }{1 – Tan A } – \dfrac{Sin A }{1- Cot A } \\ \\ \\ [/tex] [tex]:\implies \:\:\sf \dfrac{ Cos A }{1 – Tan A } – \dfrac{Sin A }{1- Cot A } \\ \\ \\ [/tex] [tex]\dag\:\it{As,\:We\:know\:that\::}\\\\[/tex] [tex] Tan A = \dfrac{Sin A }{Cos A}\\\\[/tex] [tex]:\implies \:\:\sf \dfrac{ Cos A }{1 – \dfrac{Sin A }{CosA} } – \dfrac{Sin A }{1- Cot A } \\ \\ \\ [/tex] [tex]\dag\:\it{As,\:We\:know\:that\::}\\\\[/tex] [tex] Cot A = \dfrac{Cos A }{Sin A}\\\\[/tex] [tex]:\implies \:\:\sf \dfrac{ Cos A }{1 – \dfrac{Sin A }{CosA} } – \dfrac{Sin A }{1- \dfrac{Cos A }{Sin A } } \\ \\ \\ [/tex] [tex]:\implies \:\:\sf \dfrac{ Cos A }{1 – \dfrac{Sin A }{CosA} } – \dfrac{Sin A }{1- \dfrac{Cos A }{Sin A } } \\ \\ \\ [/tex] [tex]:\implies \:\:\sf \dfrac{ Cos A }{ \dfrac{Cos A – Sin A }{CosA} } – \dfrac{Sin A }{ \dfrac{Sin A – Cos A }{Sin A } } \\ \\ \\ [/tex] [tex]:\implies \:\:\sf \dfrac{ Cos A \times Cos A }{ Cos A – Sin A } – \dfrac{Sin A \times Sin A }{ Sin A – Cos A } \\ \\ \\ [/tex] [tex]:\implies \:\:\sf \dfrac{ Cos^2 A }{ Cos A – Sin A } – \dfrac{Sin^2 A }{ Sin A – Cos A } \\ \\ \\ [/tex] [tex]:\implies \:\:\sf \dfrac{ Cos^2 A – Sin^2 A }{ Cos A – Sin A } \\ \\ \\ [/tex] [tex]\dag\:\it{As,\:We\:know\:that\::}\\\\[/tex] a² – b² = ( a + b ) ( a – b ) [tex]:\implies \:\:\sf \dfrac{ (Cos A – Sin A)(Cos A + Sin A ) }{ Cos A – Sin A } \\ \\ \\ [/tex] [tex]:\implies \:\:\sf \dfrac{ \cancel{(Cos A – Sin A)}(Cos A + Sin A ) }{\cancel {Cos A – Sin A } } \\ \\ \\ [/tex] [tex]:\implies \:\:\bf L.H.S = (Cos A + Sin A ) \\ \\ \\ [/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Therefore, [tex]\longmapsto \:\bf{L.H.S}\:=\:\sf Sin A + Cos A \\ \\ \\ [/tex] [tex]\longmapsto \:\bf{R.H.S}\:=\:\sf Sin A + Cos A \\ \\ \\ [/tex] As, we can See that , L.H.S = R.H.S ⠀⠀⠀⠀⠀[tex]\therefore {\underline {\bf{ Hence, \:Proved ! \:}}}\\\\\\[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Reply
[tex]\large\underline{\bold{Correct \:Question – }}[/tex]
[tex] \sf \: Prove \: that \: \dfrac{cosA}{1 – tanA} + \dfrac{sinA}{1 – cotA} = sinA \: + \: cosA[/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
Consider LHS,
[tex] \sf \: \dfrac{cosA}{1 – tanA} + \dfrac{sinA}{1 – cotA}[/tex]
We know,
[tex] \boxed{ \bf{ \: tanA = \dfrac{sinA}{cosA} }}[/tex]
and
[tex] \boxed{ \bf{ \: cotA = \dfrac{cosA}{sinA} }}[/tex]
So,
[tex] \sf \: = \: \dfrac{cosA}{1 – \dfrac{sinA}{cosA} } + \dfrac{sinA}{1 – \dfrac{cosA}{sinA} }[/tex]
[tex] \sf \: = \: \dfrac{cosA}{\dfrac{cosA – sinA}{cosA} } + \dfrac{sinA}{\dfrac{sinA – cosA}{sinA} }[/tex]
[tex] \sf \: = \: \dfrac{ {cos}^{2}A }{cosA – sinA} + \dfrac{ {sin}^{2} A}{sinA – cosA} [/tex]
[tex] \sf \: = \: \dfrac{ {cos}^{2}A }{cosA – sinA} – \dfrac{ {sin}^{2} A}{cosA – sinA} [/tex]
[tex] \sf \: = \: \dfrac{ {cos}^{2}A – {sin}^{2}A }{cosA – sinA} [/tex]
[tex] \sf \: = \: \dfrac{(cosA + sinA) \cancel{(cosA – sinA)}}{ \cancel{(cosA – sinA)}} \: \: \{ \because{a}^{2} – {b}^{2} = (a + b)(a – b) \}[/tex]
[tex] \sf \: = \: cosA + sinA[/tex]
[tex] \sf \: = \: RHS[/tex]
[tex]{\boxed{\boxed{\bf{Hence, Proved}}}}[/tex]
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ – tan²θ = 1
cosec²θ – cot²θ = 1
Appropriate Question :
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
Given : [tex]\longmapsto \:\:\bf \dfrac{ Cos A }{1 – Tan A } – \dfrac{Sin A }{1- Cot A } = (Sin A + Cos A ) \\ \\ \\ [/tex]
Exigency To Prove : [tex]\longmapsto \:\:\sf \dfrac{ Cos A }{1 – Tan A } – \dfrac{Sin A }{1- Cot A } = (Sin A + Cos A ) \\ \\ \\ [/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
[tex]\qquad \quad \bigstar\:\: \:\:\bf \dfrac{ Cos A }{1 – Tan A } – \dfrac{Sin A }{1- Cot A } = (Sin A + Cos A ) \\ \\ \\ [/tex]
Here ,
⠀⠀⠀⠀⠀⠀[tex]\underline {\frak{\star\:Now \: By \: Solving \: \: Given \: L.H.S \::}}\\[/tex]
[tex]\longmapsto \:\bf{L.H.S}\:=\:\sf \dfrac{ Cos A }{1 – Tan A } – \dfrac{Sin A }{1- Cot A } \\ \\ \\ [/tex]
[tex]:\implies \:\:\sf \dfrac{ Cos A }{1 – Tan A } – \dfrac{Sin A }{1- Cot A } \\ \\ \\ [/tex]
[tex]\dag\:\it{As,\:We\:know\:that\::}\\\\[/tex]
[tex]:\implies \:\:\sf \dfrac{ Cos A }{1 – \dfrac{Sin A }{CosA} } – \dfrac{Sin A }{1- Cot A } \\ \\ \\ [/tex]
[tex]\dag\:\it{As,\:We\:know\:that\::}\\\\[/tex]
[tex]:\implies \:\:\sf \dfrac{ Cos A }{1 – \dfrac{Sin A }{CosA} } – \dfrac{Sin A }{1- \dfrac{Cos A }{Sin A } } \\ \\ \\ [/tex]
[tex]:\implies \:\:\sf \dfrac{ Cos A }{1 – \dfrac{Sin A }{CosA} } – \dfrac{Sin A }{1- \dfrac{Cos A }{Sin A } } \\ \\ \\ [/tex]
[tex]:\implies \:\:\sf \dfrac{ Cos A }{ \dfrac{Cos A – Sin A }{CosA} } – \dfrac{Sin A }{ \dfrac{Sin A – Cos A }{Sin A } } \\ \\ \\ [/tex]
[tex]:\implies \:\:\sf \dfrac{ Cos A \times Cos A }{ Cos A – Sin A } – \dfrac{Sin A \times Sin A }{ Sin A – Cos A } \\ \\ \\ [/tex]
[tex]:\implies \:\:\sf \dfrac{ Cos^2 A }{ Cos A – Sin A } – \dfrac{Sin^2 A }{ Sin A – Cos A } \\ \\ \\ [/tex]
[tex]:\implies \:\:\sf \dfrac{ Cos^2 A – Sin^2 A }{ Cos A – Sin A } \\ \\ \\ [/tex]
[tex]\dag\:\it{As,\:We\:know\:that\::}\\\\[/tex]
[tex]:\implies \:\:\sf \dfrac{ (Cos A – Sin A)(Cos A + Sin A ) }{ Cos A – Sin A } \\ \\ \\ [/tex]
[tex]:\implies \:\:\sf \dfrac{ \cancel{(Cos A – Sin A)}(Cos A + Sin A ) }{\cancel {Cos A – Sin A } } \\ \\ \\ [/tex]
[tex]:\implies \:\:\bf L.H.S = (Cos A + Sin A ) \\ \\ \\ [/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
Therefore,
As, we can See that ,
⠀⠀⠀⠀⠀[tex]\therefore {\underline {\bf{ Hence, \:Proved ! \:}}}\\\\\\[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀