bu selling a camera for 2400rupees, if mena loses 4%. at what price much she sell to gain 12%? About the author Amelia
Answer: Rs 2800 Step-by-step explanation: Let the original price be x. Man losses an amount of 4%: ⇒ orig. price – 4% of orig. = 2400 ⇒ x – 4% of x = 2400 ⇒ x – (4/100 × x) = 2400 ⇒ (100x – 4x)/100 = 2400 ⇒ x = (2400 × 100)/96 ⇒ x = 2500 For a gain of 12%: price would be = original + 12% of original = 2500 + (12/100 × 2400) = 2500 + 300 = 2800 Reply
Answer: [tex] \large\underline \red {\sf {\pmb{Given}}}[/tex] ➛ A camera selling for 2400 rupees, [tex] \large \underline \red{\sf \pmb{To \: Find }}[/tex] ➛ If mena loses 4%. at what price much she sell to gain 12%? [tex] \large \underline \red{ \sf \pmb{Using \: Formulas}}[/tex] [tex] \circ{ \underline{\boxed{ \sf \purple{ C.P} = \pink{\dfrac{100}{100-loss\%} \times S.P}}}}[/tex] [tex] \circ{\underline{\boxed{\sf \purple{ S.P} = \pink{\dfrac{100 + Profit\%}{100} \times C.P}}}}[/tex] [tex] \large \underline \red{\sf \pmb{Solution }}[/tex] [tex] \pink\bigstar \: \underline \frak{ \pmb{Firstly,Finding \: the \: cost \: price \: of \: camera}}[/tex] [tex] : \implies{ \sf{ C.P} ={\dfrac{100}{100-loss\%} \times S.P}}[/tex] Substituting the values [tex] : \implies{ \sf{ C.P} ={\dfrac{100}{100 – 4} \times2400 }}[/tex] [tex] : \implies{ \sf{ C.P} ={\dfrac{100}{96} \times2400 }}[/tex] [tex] : \implies{ \sf{ C.P} ={\dfrac{100} {\cancel{96}} \times \cancel{2400 }}}[/tex] [tex] : \implies{ \sf{ C.P} =100 \times {25}}[/tex] [tex] : \implies{ \bf \red{{ C.P} = \times {2500}}}[/tex] The cost price of camera is Rs.2500 [tex] \pink\bigstar\underline\frak{ \pmb{Now,Finding \: the \: Selling \: price \: of \: camera }}[/tex] [tex] : \implies\sf{ S.P} ={\dfrac{100 + Profit\%}{100} \times C.P}[/tex] Substituting the values [tex] : \implies\sf{ S.P} ={\dfrac{100 + 12}{100} \times 2500}[/tex] [tex] : \implies\sf{ S.P} ={\dfrac{112}{100} \times 2500}[/tex] [tex] : \implies\sf{ S.P} ={\dfrac{112} {\cancel{100}} \times \cancel{ 2500}}[/tex] [tex]: \implies\sf{ S.P} =112 \times 25[/tex] [tex]: \implies\bf \red{{ S.P} =2800}[/tex] Henceforth,Mena sell the camera in Rs.2800 to gain 12%. [tex] \large \underline \red{ \sf \pmb{Additional \: Information}}[/tex] ★ Discount is a reduction given on market price. ★ Discount = Marketed price – Sale price. ★ Discount can be calculated when discount percentage is given. ★ Discount = Discount percentage of Marketed Price ➣ Additional expenses made after buying an article are included in the cost price and are known to be “overhead expenses” ★ CP = Buying Price + Overhead expenses. ➣ Sales tax is charged on sale of an item by the government and is added to the bill amount. ★ Sale tax = Tax % of bill amount ♛ Some extra formulas – ★ Amount when interest is compounded annually – P(1+R/100)^n ★ Amount when interest is compounded half yearly – P(1+R/200)^2n [tex]{\bf{Where,}}[/tex] ↝ P denotes Principal ↝ R denotes rate of interest ↝ n denotes time ↝ R/2 denotes half yearly rate ↝ 2n denotes number of half year Some important formulas – [tex]\small\begin{gathered}\begin{gathered}\large\boxed{ \begin{array}{cc}\large\sf\dag \: {\underline{More \: Formulae}} \\ \\ \bigstar \: \sf{Gain = S.P – C.P} \\ \\ \bigstar \:\sf{Loss = C.P – S.P} \\ \\ \bigstar \: \sf{Gain \: \% = \Bigg( \dfrac{Gain}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{loss \: \% = \Bigg( \dfrac{loss}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{S.P = \dfrac{100+Gain\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100+Gain\%} \times S.P} \\ \\\bigstar \: \sf{ S.P = \dfrac{100-loss\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100-loss\%} \times S.P}\end{array} }\end{gathered}\end{gathered}[/tex] Reply
Answer:
Rs 2800
Step-by-step explanation:
Let the original price be x. Man losses an amount of 4%:
⇒ orig. price – 4% of orig. = 2400
⇒ x – 4% of x = 2400
⇒ x – (4/100 × x) = 2400
⇒ (100x – 4x)/100 = 2400
⇒ x = (2400 × 100)/96
⇒ x = 2500
For a gain of 12%:
price would be = original + 12% of original
= 2500 + (12/100 × 2400)
= 2500 + 300
= 2800
Answer:
[tex] \large\underline \red {\sf {\pmb{Given}}}[/tex]
[tex] \large \underline \red{\sf \pmb{To \: Find }}[/tex]
[tex] \large \underline \red{ \sf \pmb{Using \: Formulas}}[/tex]
[tex] \circ{ \underline{\boxed{ \sf \purple{ C.P} = \pink{\dfrac{100}{100-loss\%} \times S.P}}}}[/tex]
[tex] \circ{\underline{\boxed{\sf \purple{ S.P} = \pink{\dfrac{100 + Profit\%}{100} \times C.P}}}}[/tex]
[tex] \large \underline \red{\sf \pmb{Solution }}[/tex]
[tex] \pink\bigstar \: \underline \frak{ \pmb{Firstly,Finding \: the \: cost \: price \: of \: camera}}[/tex]
[tex] : \implies{ \sf{ C.P} ={\dfrac{100}{100-loss\%} \times S.P}}[/tex]
[tex] : \implies{ \sf{ C.P} ={\dfrac{100}{100 – 4} \times2400 }}[/tex]
[tex] : \implies{ \sf{ C.P} ={\dfrac{100}{96} \times2400 }}[/tex]
[tex] : \implies{ \sf{ C.P} ={\dfrac{100} {\cancel{96}} \times \cancel{2400 }}}[/tex]
[tex] : \implies{ \sf{ C.P} =100 \times {25}}[/tex]
[tex] : \implies{ \bf \red{{ C.P} = \times {2500}}}[/tex]
[tex] \pink\bigstar\underline\frak{ \pmb{Now,Finding \: the \: Selling \: price \: of \: camera }}[/tex]
[tex] : \implies\sf{ S.P} ={\dfrac{100 + Profit\%}{100} \times C.P}[/tex]
[tex] : \implies\sf{ S.P} ={\dfrac{100 + 12}{100} \times 2500}[/tex]
[tex] : \implies\sf{ S.P} ={\dfrac{112}{100} \times 2500}[/tex]
[tex] : \implies\sf{ S.P} ={\dfrac{112} {\cancel{100}} \times \cancel{ 2500}}[/tex]
[tex]: \implies\sf{ S.P} =112 \times 25[/tex]
[tex]: \implies\bf \red{{ S.P} =2800}[/tex]
[tex] \large \underline \red{ \sf \pmb{Additional \: Information}}[/tex]
★ Discount is a reduction given on market price.
★ Discount = Marketed price – Sale price.
★ Discount can be calculated when discount percentage is given.
★ Discount = Discount percentage of Marketed Price
➣ Additional expenses made after buying an article are included in the cost price and are known to be “overhead expenses”
★ CP = Buying Price + Overhead expenses.
➣ Sales tax is charged on sale of an item by the government and is added to the bill amount.
★ Sale tax = Tax % of bill amount
♛ Some extra formulas –
★ Amount when interest is compounded annually – P(1+R/100)^n
★ Amount when interest is compounded half yearly – P(1+R/200)^2n
[tex]{\bf{Where,}}[/tex]
Some important formulas –
[tex]\small\begin{gathered}\begin{gathered}\large\boxed{ \begin{array}{cc}\large\sf\dag \: {\underline{More \: Formulae}} \\ \\ \bigstar \: \sf{Gain = S.P – C.P} \\ \\ \bigstar \:\sf{Loss = C.P – S.P} \\ \\ \bigstar \: \sf{Gain \: \% = \Bigg( \dfrac{Gain}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{loss \: \% = \Bigg( \dfrac{loss}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{S.P = \dfrac{100+Gain\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100+Gain\%} \times S.P} \\ \\\bigstar \: \sf{ S.P = \dfrac{100-loss\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100-loss\%} \times S.P}\end{array} }\end{gathered}\end{gathered}[/tex]