The perimeter of a rectangle is 30 cm and its length is x cm. Find its area in terms of x. step by step explanation. About the author Madeline
Answer: Question: The perimeter of a rectangle is 30 cm and its length is x cm. Find its area in terms of x. To find: Area in terms of x Given: Perimeter = 30 cm L = x Answer : To find area first we should know value of with. So first Let’s find width by using this formula: [tex]\blue{\boxed { \sf \underline {Perimeter=2(Length+Width)}}}[/tex] Insert Value of length and perimeter. 30 = 2(x + width) [tex]: \implies \sf \dfrac{30}{2} = (x + width)[/tex] [tex]: \implies \sf{}x + width = \dfrac{ { \cancel{30}}^{ \: 15} }{ { \cancel{2}}^{ \: 1} }[/tex] [tex]: \implies \sf{}x + width = 15[/tex] [tex]: \implies \sf{} \star \underline{\underline{ width = 15 – x}} \star[/tex] Now Let’s find Area by using this formula [tex]\blue{\boxed { \sf \underline {Area=Length \times Width }}}[/tex] [tex]: \implies \sf{}Area = x \times (15 – x)[/tex] [tex]: \implies \sf{} \star \underline{\underline{ Area = 15x – {x}^{2} \: cm {}^{2} }} \star[/tex] Reply
Answer:
Question:
The perimeter of a rectangle is 30 cm and its length is x cm. Find its area in terms of x.
To find:
Given:
Answer :
To find area first we should know value of with.
So first Let’s find width by using this formula:
[tex]\blue{\boxed { \sf \underline {Perimeter=2(Length+Width)}}}[/tex]
Insert Value of length and perimeter.
30 = 2(x + width)
[tex]: \implies \sf \dfrac{30}{2} = (x + width)[/tex]
[tex]: \implies \sf{}x + width = \dfrac{ { \cancel{30}}^{ \: 15} }{ { \cancel{2}}^{ \: 1} }[/tex]
[tex]: \implies \sf{}x + width = 15[/tex]
[tex]: \implies \sf{} \star \underline{\underline{ width = 15 – x}} \star[/tex]
Now Let’s find Area by using this formula
[tex]\blue{\boxed { \sf \underline {Area=Length \times Width }}}[/tex]
[tex]: \implies \sf{}Area = x \times (15 – x)[/tex]
[tex]: \implies \sf{} \star \underline{\underline{ Area = 15x – {x}^{2} \: cm {}^{2} }} \star[/tex]