The ratio of the measures of three sides ofa triangle is 4:2:3 and its perimeter is36 cm. Find the area of this triangle. About the author Anna
Answer: taking sides of triangle in ratio of 4x, 2x, 3x and perimeter is 36 cm. Therefore, perimeter of triangle = Sum of all sides 36 = 4x + 2x + 3x 36 = 9x 4 = x x = 4 Therefore , sides of triangle are 4x = 4×4 = 16 cm 2x = 2×4 = 8 cm 3x = 3×4 = 12 cm Now, using heron’s formula s = (a+b+c)/2 s = (16+8+12)/2 s = 36/2 s = 18 Now, Area = √s(s-a)(s-b)(s-c) Area = √18(18-16)(18-8)(18-12) Area = √18×2×10×6 Area = √2160 Area = 46.47 cubic cm. Area of a triangle is 46.47 cubic cm. Please support me , written by so much efforts Reply
Let each side of the triangle be 4x, 2x and 3x [tex]\\[/tex] Perimeter = Sum of all sides → 36 = 4x + 2x + 3x → 36 = 9x → x = 36 ÷ 9 → x = 4 cm [tex]\\[/tex] For finding each side of the triangle, 4x = 4(4) = 16 cm = a 2x = 2(4) = 8 cm = b 3x = 3(4) = 12 cm = c [tex]\\[/tex] Since we know the 3 sides of the triangle, we apply Herons formula to find the area of triangle. [tex]\\[/tex] Semiperimeter = 36 ÷ 2 = 18 So, s = 18 [tex]\\[/tex] [tex] \sf{Area = \sqrt{s(s – a)(s – b)(s – c)} } \\ \\ [/tex] [tex]\sf{Area = \sqrt{18(18 – 16)(18 – 8)(18 – 12)} } \\ \\ [/tex] [tex] : \implies \sf{Area = \sqrt{18(2)(10)(6)} } \\ \\ [/tex] [tex]: \implies \sf{Area = \sqrt{36 \times 60} } \\ \\ [/tex] [tex]: \implies \sf{Area = 6 \sqrt{4 \times 15} } \\ \\ [/tex] [tex]: \implies \sf{Area = 12 \sqrt{15} } \\ [/tex] Substitute the value of √15 as 3.87 [tex] \\ \therefore \boxed{ \bf{Area = 46.44\: {cm}^{2} }}[/tex] Reply
Answer:
taking sides of triangle in ratio of 4x, 2x, 3x and perimeter is 36 cm.
Therefore, perimeter of triangle = Sum of all sides
36 = 4x + 2x + 3x
36 = 9x
4 = x
x = 4
Therefore , sides of triangle are
4x = 4×4 = 16 cm
2x = 2×4 = 8 cm
3x = 3×4 = 12 cm
Now, using heron’s formula
s = (a+b+c)/2
s = (16+8+12)/2
s = 36/2
s = 18
Now, Area = √s(s-a)(s-b)(s-c)
Area = √18(18-16)(18-8)(18-12)
Area = √18×2×10×6
Area = √2160
Area = 46.47 cubic cm.
Area of a triangle is 46.47 cubic cm.
Please support me , written by so much efforts
Let each side of the triangle be 4x, 2x and 3x
[tex]\\[/tex]
Perimeter = Sum of all sides
→ 36 = 4x + 2x + 3x
→ 36 = 9x
→ x = 36 ÷ 9
→ x = 4 cm
[tex]\\[/tex]
For finding each side of the triangle,
[tex]\\[/tex]
Since we know the 3 sides of the triangle, we apply Herons formula to find the area of triangle.
[tex]\\[/tex]
Semiperimeter = 36 ÷ 2 = 18
So, s = 18
[tex]\\[/tex]
[tex] \sf{Area = \sqrt{s(s – a)(s – b)(s – c)} } \\ \\ [/tex]
[tex]\sf{Area = \sqrt{18(18 – 16)(18 – 8)(18 – 12)} } \\ \\ [/tex]
[tex] : \implies \sf{Area = \sqrt{18(2)(10)(6)} } \\ \\ [/tex]
[tex]: \implies \sf{Area = \sqrt{36 \times 60} } \\ \\ [/tex]
[tex]: \implies \sf{Area = 6 \sqrt{4 \times 15} } \\ \\ [/tex]
[tex]: \implies \sf{Area = 12 \sqrt{15} } \\ [/tex]
Substitute the value of √15 as 3.87
[tex] \\ \therefore \boxed{ \bf{Area = 46.44\: {cm}^{2} }}[/tex]