Exercise 4(b)Find the vector equation of the line passing through the point 2i +3j+k and parallel to the vector4i-2j + 3 k.on of the side BC About the author Melody
Answer: Given :- Ratio of length breadth and height = 1:2:3 TSA = 792 sq. m To Find :- Volume Solution :- Let, Length = x breadth = 2x Height = 3x \bf\red{TSA = 2(lb + bh +lh)}TSA=2(lb+bh+lh) \sf 792 = 2(x\times 2x +2 x\times 3x+ x\times 3x)792=2(x×2x+2x×3x+x×3x) \sf 792=2(2x^{2} +6x^{2} +3x^{2} )792=2(2x 2 +6x 2 +3x 2 ) \sf 792 = 2(11x^{2} )792=2(11x 2 ) \sf\dfrac{792}{2} = 11x^2 2 792 =11x 2 \sf 396 = 11x^{2}396=11x 2 \sf \dfrac{396}{11} = x^{2} 11 396 =x 2 \sf 36 = x^{2}36=x 2 \sf \sqrt{36} =\sqrt{x^2} 36 = x 2 \sf 6 = x6=x Length = 6 m Breadth = 2(6) = 12 m Height = 3(6) = 18 m ~Finding volume \bf Volume = l\times b \times hVolume=l×b×h \sf Volume = 6 \times12\times18Volume=6×12×18 \sf Volume = 1296 m^{3}Volume=1296m 3 Reply
Answer:
Given :-
Ratio of length breadth and height = 1:2:3
TSA = 792 sq. m
To Find :-
Volume
Solution :-
Let,
Length = x
breadth = 2x
Height = 3x
\bf\red{TSA = 2(lb + bh +lh)}TSA=2(lb+bh+lh)
\sf 792 = 2(x\times 2x +2 x\times 3x+ x\times 3x)792=2(x×2x+2x×3x+x×3x)
\sf 792=2(2x^{2} +6x^{2} +3x^{2} )792=2(2x
2
+6x
2
+3x
2
)
\sf 792 = 2(11x^{2} )792=2(11x
2
)
\sf\dfrac{792}{2} = 11x^2
2
792
=11x
2
\sf 396 = 11x^{2}396=11x
2
\sf \dfrac{396}{11} = x^{2}
11
396
=x
2
\sf 36 = x^{2}36=x
2
\sf \sqrt{36} =\sqrt{x^2}
36
=
x
2
\sf 6 = x6=x
Length = 6 m
Breadth = 2(6) = 12 m
Height = 3(6) = 18 m
~Finding volume
\bf Volume = l\times b \times hVolume=l×b×h
\sf Volume = 6 \times12\times18Volume=6×12×18
\sf Volume = 1296 m^{3}Volume=1296m
3