The dimensions of a cuboid are in the ration 4 : 5 : 6 and its surface area is 5328 m2 Find (i) its length, breadth and height, (ii) its volume and (iii) the length of a diagonal. About the author Autumn
Answer: what is Gravity? Step-by-step explanation: Meri freind bnjao harroz festival hoga tumhare liye , I’m Divyanshu Chouhan Reply
[tex] \huge{ \mid{ \boxed{ \sf{Question:- }}}} \mid[/tex] The dimensions of a cuboid are in the ration 4 : 5 : 6 and its surface area is 5328 m² Find (i) its length, breadth and height, (ii) its volume and (iii) the length of a diagonal. [tex] \huge \bf{ \underline{Given}}[/tex] Surface Area of cuboid is 5328m² Dimensions are in the ratio of 4:5:6 To find:– It’s length, breadth and height The length of diagonal Solution:- Let the dimensions be 4x, 5x, 6x We know that Surface area of cuboid =2(lb+bh+hl) [tex] \: \: \: \: \: \: \: \bf \: \implies \: 2(4x \times 5x + 5x \times 6x + 6x \times 4x) = 5328 {m}^{2} [/tex] [tex] \: \: \: \: \: \: \: \: \sf{ \red{\implies \: 2(20 {x}^{2} + 30 {x}^{2} + 24 {x}^{2} ) = 5328}}[/tex] [tex] \: \: \: \: \: \: \sf \implies \: 148 {x}^{2} = 5328[/tex] [tex] \: \: \: \: \: \: \implies \sf \: x² = 36[/tex] [tex] \: \: \: \: \: \implies \sf \: x = \sqrt{36} = 6[/tex] Therefore the required value for x is 6 Now the dimensions are:- Length of cuboid = 6×4=24m Breadth of cuboid =6×5=30m Height of cuboid =6×6=36m Diagonal of cuboid:– Formula used⬇️ [tex] \: \: \: \: \: \: \: \: \: \: \: \: \longrightarrow\sqrt{( {l}^{2} + {b}^{2} + {h}^{2}) } [/tex] [tex] \: \: \: \: \: \: \: \: \: \: \: \: \: = \sqrt{ ({24}^{2} + {30}^{2} + {36}^{2}) } [/tex] [tex] \: \: \: \: \: \: \: \: \: \: \: = \sqrt{576 + 900 + 1296} [/tex] [tex] \: \: \: \: \: \: \: \: \: \: \: \approx52.172[/tex] ━━━━━━━━━━━━━━━━━━━━━━━━━━ More formulas:- Surface area formulas ✔✔:- Surface area of cuboid =2(lb+bh+hl) Surface area of cube=6a² Right Circular Cone= 2πr(h+r) Sphere =4πr² Right circular cone= πr(l+r) Hemisphere = 3πr² Reply
Answer:
what is Gravity?
Step-by-step explanation:
Meri freind bnjao harroz festival hoga tumhare liye , I’m Divyanshu Chouhan
[tex] \huge{ \mid{ \boxed{ \sf{Question:- }}}} \mid[/tex]
[tex] \huge \bf{ \underline{Given}}[/tex]
To find:–
Solution:-
Let the dimensions be 4x, 5x, 6x
We know that
[tex] \: \: \: \: \: \: \: \bf \: \implies \: 2(4x \times 5x + 5x \times 6x + 6x \times 4x) = 5328 {m}^{2} [/tex]
[tex] \: \: \: \: \: \: \: \: \sf{ \red{\implies \: 2(20 {x}^{2} + 30 {x}^{2} + 24 {x}^{2} ) = 5328}}[/tex]
[tex] \: \: \: \: \: \: \sf \implies \: 148 {x}^{2} = 5328[/tex]
[tex] \: \: \: \: \: \: \implies \sf \: x² = 36[/tex]
[tex] \: \: \: \: \: \implies \sf \: x = \sqrt{36} = 6[/tex]
Therefore the required value for x is 6
Now the dimensions are:-
Diagonal of cuboid:–
Formula used⬇️
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \longrightarrow\sqrt{( {l}^{2} + {b}^{2} + {h}^{2}) } [/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: = \sqrt{ ({24}^{2} + {30}^{2} + {36}^{2}) } [/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: = \sqrt{576 + 900 + 1296} [/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \approx52.172[/tex]
━━━━━━━━━━━━━━━━━━━━━━━━━━
More formulas:-
Surface area formulas ✔✔:-