[tex]\large\underline{\sf{Given- }}[/tex] [tex]\rm :\longmapsto\: \sf \: f(x) = \sf \displaystyle\int^{x} _{0} \sf \: {e}^{2t} \: sin3t \: dt [/tex] [tex]\large\underline{\sf{To\:Find – }}[/tex] [tex]\rm :\longmapsto\:f'(x)[/tex] [tex]\begin{gathered}\Large{\bold{{\underline{Formula \: Used – }}}} \end{gathered}[/tex] [tex] \sf \: Differentiation \: under \: the \: integral \: sign \: [/tex] [tex] \bf \: The \: Leibniz \: Rule[/tex] [tex] \sf \: \dfrac{d}{dx}\sf \displaystyle\int^{b} _{a} \sf \:f(x,t)dt = \sf \displaystyle\int^{b} _{a} \sf \: \dfrac{ \partial}{ \partial \: x} f(x,t)dt + \dfrac{db}{dx}f(x,b) – \dfrac{da}{dx}f(x,a) [/tex] [tex]\large\underline{\sf{Solution-}}[/tex] Given that [tex]\rm :\longmapsto\: \sf \: f(x) = \sf \displaystyle\int^{x} _{0} \sf \: {e}^{2t} \: sin3t \: dt [/tex] On differentiating both sides w. r. t. x, we get [tex]\rm :\longmapsto\: \sf \: \dfrac{d}{dx}f(x) = \dfrac{d}{dx}\sf \displaystyle\int^{x} _{0} \sf \: {e}^{2t} \: sin3t \: dt [/tex] [tex]\rm :\longmapsto\: \sf \: f'(x) = \sf \displaystyle\int^{x} _{0} \sf \:\dfrac{ \partial}{ \partial \: x} \: {e}^{2t} \: sin3t \: dt + \dfrac{d}{dx}(x) \: {e}^{2x} sin3x – 0[/tex] [tex]\rm :\longmapsto\:f'(x) = 0 + 1 \times {e}^{2x} sin3x[/tex] [tex]\bf\implies \:f'(x) = {e}^{2x} sin3x[/tex] Additional Information :- The Leibniz rule for differentiating under the integral sign is also known as Feynman’s trick or technique for integration. Reply
[tex]\large\underline{\sf{Given- }}[/tex]
[tex]\rm :\longmapsto\: \sf \: f(x) = \sf \displaystyle\int^{x} _{0} \sf \: {e}^{2t} \: sin3t \: dt [/tex]
[tex]\large\underline{\sf{To\:Find – }}[/tex]
[tex]\rm :\longmapsto\:f'(x)[/tex]
[tex]\begin{gathered}\Large{\bold{{\underline{Formula \: Used – }}}} \end{gathered}[/tex]
[tex] \sf \: Differentiation \: under \: the \: integral \: sign \: [/tex]
[tex] \bf \: The \: Leibniz \: Rule[/tex]
[tex] \sf \: \dfrac{d}{dx}\sf \displaystyle\int^{b} _{a} \sf \:f(x,t)dt = \sf \displaystyle\int^{b} _{a} \sf \: \dfrac{ \partial}{ \partial \: x} f(x,t)dt + \dfrac{db}{dx}f(x,b) – \dfrac{da}{dx}f(x,a) [/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
Given that
[tex]\rm :\longmapsto\: \sf \: f(x) = \sf \displaystyle\int^{x} _{0} \sf \: {e}^{2t} \: sin3t \: dt [/tex]
On differentiating both sides w. r. t. x, we get
[tex]\rm :\longmapsto\: \sf \: \dfrac{d}{dx}f(x) = \dfrac{d}{dx}\sf \displaystyle\int^{x} _{0} \sf \: {e}^{2t} \: sin3t \: dt [/tex]
[tex]\rm :\longmapsto\: \sf \: f'(x) = \sf \displaystyle\int^{x} _{0} \sf \:\dfrac{ \partial}{ \partial \: x} \: {e}^{2t} \: sin3t \: dt + \dfrac{d}{dx}(x) \: {e}^{2x} sin3x – 0[/tex]
[tex]\rm :\longmapsto\:f'(x) = 0 + 1 \times {e}^{2x} sin3x[/tex]
[tex]\bf\implies \:f'(x) = {e}^{2x} sin3x[/tex]
Additional Information :-