Let (x, y) be the circumcenter, which is equidistant from the vertices of the triangle (-2, -3), (-1, 0) and (7, -6) each. Let the distance be d. So, by distance formula, [tex]\longrightarrow d^2=(x+2)^2+(y+3)^2[/tex] [tex]\longrightarrow d^2=x^2+y^2+4x+6y+13\quad\quad\dots(1)[/tex] and, [tex]\longrightarrow d^2=(x+1)^2+(y-0)^2[/tex] [tex]\longrightarrow d^2=x^2+y^2+2x+1\quad\quad\dots(2)[/tex] and, [tex]\longrightarrow d^2=(x-7)^2+(y+6)^2[/tex] [tex]\longrightarrow d^2=x^2+y^2-14x+12y+85\quad\quad\dots(3)[/tex] Equating (1) and (2), [tex]\longrightarrow x^2+y^2+4x+6y+13=x^2+y^2+2x+1[/tex] [tex]\longrightarrow x=-3y-6\quad\quad\dots(4)[/tex] Equating (2) and (3), [tex]\longrightarrow x^2+y^2+2x+1=x^2+y^2-14x+12y+85[/tex] [tex]\longrightarrow 16x-12y-84=0[/tex] Putting value of from (4), [tex]\longrightarrow 16(-3y-6)-12y-84=0[/tex] [tex]\longrightarrow -60y-180=0[/tex] [tex]\longrightarrow y=-3[/tex] Then from (4), [tex]\longrightarrow x=-3(-3)-6[/tex] [tex]\longrightarrow x=3[/tex] Hence the circumcenter of the triangle is (x, y) = (3, -3). Reply
Let (x, y) be the circumcenter, which is equidistant from the vertices of the triangle (-2, -3), (-1, 0) and (7, -6) each.
Let the distance be d. So, by distance formula,
[tex]\longrightarrow d^2=(x+2)^2+(y+3)^2[/tex]
[tex]\longrightarrow d^2=x^2+y^2+4x+6y+13\quad\quad\dots(1)[/tex]
and,
[tex]\longrightarrow d^2=(x+1)^2+(y-0)^2[/tex]
[tex]\longrightarrow d^2=x^2+y^2+2x+1\quad\quad\dots(2)[/tex]
and,
[tex]\longrightarrow d^2=(x-7)^2+(y+6)^2[/tex]
[tex]\longrightarrow d^2=x^2+y^2-14x+12y+85\quad\quad\dots(3)[/tex]
Equating (1) and (2),
[tex]\longrightarrow x^2+y^2+4x+6y+13=x^2+y^2+2x+1[/tex]
[tex]\longrightarrow x=-3y-6\quad\quad\dots(4)[/tex]
Equating (2) and (3),
[tex]\longrightarrow x^2+y^2+2x+1=x^2+y^2-14x+12y+85[/tex]
[tex]\longrightarrow 16x-12y-84=0[/tex]
Putting value of from (4),
[tex]\longrightarrow 16(-3y-6)-12y-84=0[/tex]
[tex]\longrightarrow -60y-180=0[/tex]
[tex]\longrightarrow y=-3[/tex]
Then from (4),
[tex]\longrightarrow x=-3(-3)-6[/tex]
[tex]\longrightarrow x=3[/tex]
Hence the circumcenter of the triangle is (x, y) = (3, -3).
➖➖➖➖➖➖➖➖➖➖
refer attachment
➖➖➖➖➖➖➖➖➖➖
hope it helps❤᭄࿐