ABC is on isosceles triangle of 25/6 square units. If the coordinates of the base are B(1,3) ond C(-2,7), then the coordinates of A are Clear Response
Given that, the coordinates of the base are [tex]B (1, 3)[/tex] and [tex]C (- 2, 7)[/tex].
Thus the length of [tex]BC[/tex]
[tex]=\sqrt{(1+2)^{2}+(3-7)^{2}}[/tex] units
[tex]=\sqrt{3^{2}+4^{2}}[/tex] units
[tex]=\sqrt{9+16}[/tex] units
[tex]=\sqrt{25}[/tex] units
[tex]5[/tex] units
Find the length of the height:
Since the area of the given isosceles triangle [tex]ABC[/tex] is [tex]\frac{25}{6}[/tex] square units, the length of the height [tex]AD[/tex] (drawn) be
Answer:
swwaawsdffgffgghjjhssvcscvv
Step-by-step explanation:
Find the length of the base:
Given that, the coordinates of the base are [tex]B (1, 3)[/tex] and [tex]C (- 2, 7)[/tex].
Thus the length of [tex]BC[/tex]
[tex]=\sqrt{(1+2)^{2}+(3-7)^{2}}[/tex] units
[tex]=\sqrt{3^{2}+4^{2}}[/tex] units
[tex]=\sqrt{9+16}[/tex] units
[tex]=\sqrt{25}[/tex] units
[tex]5[/tex] units
Find the length of the height:
Since the area of the given isosceles triangle [tex]ABC[/tex] is [tex]\frac{25}{6}[/tex] square units, the length of the height [tex]AD[/tex] (drawn) be
[tex]\quad 2\times\frac{area\:of\:\Delta ABC}{length\:of\:the\:base}[/tex]
[tex]=2\times\frac{\frac{25}{6}}{5}[/tex] units
[tex]=2\times\frac{25}{6\times 5}[/tex] units
[tex]=\frac{50}{30}[/tex] units
[tex]=\frac{5}{3}[/tex] units
Find the equation of the base:
The equation of the base [tex]BC[/tex] is
[tex]\quad \frac{y-7}{7-3}=\frac{x+2}{-2-1}[/tex]
[tex]\Rightarrow \frac{y-7}{4}=\frac{x+2}{-3}[/tex]
[tex]\Rightarrow 4x+8=-3y+21[/tex]
[tex]\Rightarrow 4x+3y=13[/tex] ___(1)
Find the mid-point of the base:
The coordinates of the mid-point [tex]D[/tex] of the base [tex]BC[/tex] are
[tex]\quad (\frac{1-2}{2},\frac{3+7}{2})[/tex] i.e., [tex](-\frac{1}{2},5)[/tex]
Find the equation of the height:
Since [tex]AD[/tex] is perpendicular to [tex]BC[/tex], let the equation of [tex]AD[/tex] be
[tex]\quad 3x-4y=k[/tex] where [tex]k[/tex] is constant
Since [tex]AD[/tex] pαsses through the point [tex]D(-\frac{1}{2},5)[/tex],
[tex]\quad 3(-\frac{1}{2})-4(5)=k[/tex]
[tex]\Rightarrow k=-\frac{43}{2}[/tex]
Thus the equation of [tex]AD[/tex] is
[tex]\quad 3x-4y=-\frac{43}{2}[/tex]
[tex]\Rightarrow 6x-8y=-43[/tex] ___ (2)
Consider the vertex [tex]A[/tex]:
Let the coordinates of [tex]A[/tex] be [tex](m,n)[/tex].
Satisfy equation no. (2) with [tex]A[/tex]:
Since [tex]AD[/tex] is satisfied by [tex]A(m,n)[/tex],
[tex]\quad 6m-8n=-43[/tex] ___ (3)
Use the distance of [tex]A[/tex] from the base:
Here the distance of [tex]A(m,n)[/tex] from the base [tex]BC:4x+3y=13[/tex] is [tex]\frac{5}{3}[/tex] units. Then
[tex]\quad \frac{4m+3n-13}{\sqrt{4^{2}+3^{2}}}=\frac{5}{3}[/tex]
[tex]\Rightarrow \frac{4m+3n-13}{5}=\frac{5}{3}[/tex]
[tex]\Rightarrow 12m+9n-39=25[/tex]
[tex]\Rightarrow 12m+9n=64[/tex] ___ (4)
Find the value of [tex]m[/tex] and [tex]n[/tex]:
We have two equations to solve,
[tex]\quad 6m-8n=-43\quad\quad\times 2[/tex]
[tex]\quad 12m+9n=64\quad\quad\times 1[/tex]
[tex]\Rightarrow[/tex]
[tex]\quad 12m-16n=-86[/tex]
[tex]\quad 12m+9n=64[/tex]
On subtraction, we get
[tex]\quad 25n=150\Rightarrow n=6[/tex]
Thus [tex]m=\frac{5}{6}[/tex]
Answer:
[tex]\therefore[/tex] the coordinates of [tex]A[/tex] are [tex](\frac{5}{6},6)[/tex].