Question :- To verify the identity a³+b³ = (a+b)(a² – ab + b²) Answer :- In order to verify the identity let a = 4 b = 1 By substituting the values, ⇒4³ +1³ = (4+1)[4² – (4)(1) + 1²] Solving LHS (left hand side of the equation) and RHS (Right hand side of the equation) separately, LHS :- 4³ + 1³ ⇒ 64 + 1 ⇒ 65 RHS :- (4+1)[4² – (4)(1) + 1²] ⇒ (5)[16 – 4 + 1] ⇒ (5)(13) ⇒ 65 LHS = RHS Therefore verified Some more formulas :- (a+b)² = a² + 2ab + b² (a-b)² = a² – 2ab + b² (a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca (x+a)(x+b) = x² + x(a+b) + ab a²-b² = (a+b)(a-b) (a+b)³ = a³ + 3a²b + 3ab² + b³ (a-b)³ = a³ – 3a²b + 3ab² – b³ a³+b³ = (a+b)(a² – ab + b²) a³-b³ = (a-b)(a² + ab + b²) a³+b³+c³ – 3abc = (a+b+c)(a² + b² + c² – ab – bc – ca) Reply
Question :-
To verify the identity a³+b³ = (a+b)(a² – ab + b²)
Answer :-
In order to verify the identity let
By substituting the values,
⇒4³ +1³ = (4+1)[4² – (4)(1) + 1²]
Solving LHS (left hand side of the equation) and RHS (Right hand side of the equation) separately,
LHS :-
4³ + 1³
⇒ 64 + 1
⇒ 65
RHS :-
(4+1)[4² – (4)(1) + 1²]
⇒ (5)[16 – 4 + 1]
⇒ (5)(13)
⇒ 65
LHS = RHS
Therefore verified
Some more formulas :-