Hola Brainlians. Here’s a question to check your Trigonometric skill. ICSE Board : Trigonometry, Class 10. Give answer fast and no spam.
Proof the given identity.
(cosecx – sinx)(secx – cosx) = 1/(tanx + cotx)
Spammers stay away. No spam. Give best answer. Mods and stars answer.
Step-by-step explanation:
We will use simplification in both the sides, for easy process underway.
So, as hinted, simplifying the RHS will help.
We have, RHS as :-
[tex]\sf{\dfrac{1}{tanx+cotx}}[/tex]
We can also write tanx and cotx in terms of sinx and cosx.
[tex]\sf{\dfrac{1}{\dfrac{sinx}{cosx}+ \dfrac{cosx}{sinx}}}[/tex]
[tex]\sf{\dfrac{1}{\dfrac{sin^2 x + cos^2 x}{cosx . sinx}}}[/tex]
sin²x + cos²x = 1 , applying it:-
[tex]\sf{\dfrac{1}{\dfrac{1}{cosx . sinx}}}[/tex]
Resultant RHS – [tex]\sf{cosx . sinx }[/tex]
Moving on to LHS,
[tex]\sf{(\dfrac{1}{sinx} – sinx)(\dfrac{1}{cosx} – cosx)}[/tex]
Converted cosecx into 1/sinx and secx into 1/cosx
[tex]\sf{(\dfrac{1 – sin^2 x}{sinx})(\dfrac{1 – cos^2 x}{cosx})}[/tex]
[tex]\sf{\dfrac{(1 – sin^2 x)(1 – cos^2 x)}{sinx . cosx}}[/tex]
Breaking the brackets,
[tex]\sf{\dfrac{1 – cos^2 x – sin^2 x + sin^2x . cos^2 x }{sinx . cosx}}[/tex]
Applying sin²x + cos²x = 1 ,
[tex]\sf{\dfrac{1 – 1 sin^2x . cos^2 x }{sinx . cosx}}[/tex]
[tex]\sf{\dfrac{(sinx . cosx)(sinx . cosx) }{sinx . cosx}}[/tex]
Cutting one of the brackets off with denominator,
We get cosx . sinx
cosx . sinx = cosx . sinx
LHS = RHS
Hence, proved.
Question:–
To Find:–
Solution:–
We have RHS as:-
Now ,
[tex]\longrightarrow\sf \: \dfrac { 1 } { \dfrac { sinx } { cosx } + \dfrac { cosx } { sinx } } [/tex]
Here ,
[tex]\longrightarrow\sf \: \dfrac { 1 } { \dfrac { 1 } { cosx.sinx } } [/tex]
Now ,
[tex]\longrightarrow\sf \: LHS = ( \dfrac { 1 } { sinx } – sinx )( \dfrac { 1 } { cosx } – cosx ) [/tex]
[tex]\longrightarrow\sf \: \dfrac { 1 – { cos }^{ 2 }x – { sin }^{ 2 }x + { sin }^{ 2 }x \times { cos }^{ 2 }x }{ sinx \times cosx } [/tex]
[tex]\longrightarrow\sf \: \dfrac { ( sinx.cosx )( sinx.cosx ) } { ( sinx.cosx ) } [/tex]
[tex]\longrightarrow\sf \: sinx.cosx [/tex]
[tex]\longrightarrow\sf \: LHS = RHS [/tex]