Find the 10th term of the AP where sum of the first n terms is given by 2n² + 3n. About the author Faith
Answer: [tex]\star\large\mathcal{\underline{\underline{PLEASE \: }}}\large\mathcal\red{\underline{\underline{F}}}\large\mathcal\green{\underline{\underline{OLL}}}\large\mathcal\pink{\underline{\underline{OW \: }}}\large\mathcal\blue{\underline{\underline{ME}}}\star[/tex] Step-by-step explanation: [tex]Given \: , Sn = 2n²+3n[/tex] [tex]now \: we \: know \: that, [/tex] [tex]S1 = a1 \\ [/tex] [tex][ By \: definition \: that \: sum \\ \: of \: first \: term \: is \: a1 \: only][/tex] [tex]S1 = 2(1)² + 3(1)[/tex] [tex]= 2+3[/tex] [tex]= 5 = a1[/tex] [tex]now \: S2 = 2(2)²+3(2)[/tex] [tex]= 8+6[/tex] [tex]= 14[/tex] [tex]a2 = S2-S1[/tex] [tex]= 14-5[/tex] [tex]= 9 = a2[/tex] [tex]d = a2 – a1[/tex] [tex]= 9-5[/tex] [tex]= 4 [/tex] [tex]now \: we \: know \: that ,[/tex] [tex]a10 = a1+ (n-1)d[/tex] [tex]= 5 + (10-1)4[/tex] [tex]= 5+36[/tex] [tex]= 41[/tex] [tex]therefore , \: the \: 10th \\ \: term \: of \: the \: AP \: is \: 41.[/tex] [tex]please \: like \: my \: answer \\ \&\\ mark \: me \: brainliest \: please \: :)))[/tex] [tex]\star\large\mathcal{\underline{\underline{PLEASE \: }}}\large\mathcal\red{\underline{\underline{F}}}\large\mathcal\green{\underline{\underline{OLL}}}\large\mathcal\pink{\underline{\underline{OW \: }}}\large\mathcal\blue{\underline{\underline{ME}}}\star[/tex] [tex]\star \: i \: hope \: you \: will \: understand \: me\star[/tex] Reply
Answer:
[tex]\star\large\mathcal{\underline{\underline{PLEASE \: }}}\large\mathcal\red{\underline{\underline{F}}}\large\mathcal\green{\underline{\underline{OLL}}}\large\mathcal\pink{\underline{\underline{OW \: }}}\large\mathcal\blue{\underline{\underline{ME}}}\star[/tex]
Step-by-step explanation:
[tex]Given \: , Sn = 2n²+3n[/tex]
[tex]now \: we \: know \: that, [/tex]
[tex]S1 = a1 \\ [/tex]
[tex][ By \: definition \: that \: sum \\ \: of \: first \: term \: is \: a1 \: only][/tex]
[tex]S1 = 2(1)² + 3(1)[/tex]
[tex]= 2+3[/tex]
[tex]= 5 = a1[/tex]
[tex]now \: S2 = 2(2)²+3(2)[/tex]
[tex]= 8+6[/tex]
[tex]= 14[/tex]
[tex]a2 = S2-S1[/tex]
[tex]= 14-5[/tex]
[tex]= 9 = a2[/tex]
[tex]d = a2 – a1[/tex]
[tex]= 9-5[/tex]
[tex]= 4 [/tex]
[tex]now \: we \: know \: that ,[/tex]
[tex]a10 = a1+ (n-1)d[/tex]
[tex]= 5 + (10-1)4[/tex]
[tex]= 5+36[/tex]
[tex]= 41[/tex]
[tex]therefore , \: the \: 10th \\ \: term \: of \: the \: AP \: is \: 41.[/tex]
[tex]please \: like \: my \: answer \\ \&\\ mark \: me \: brainliest \: please \: :)))[/tex]
[tex]\star\large\mathcal{\underline{\underline{PLEASE \: }}}\large\mathcal\red{\underline{\underline{F}}}\large\mathcal\green{\underline{\underline{OLL}}}\large\mathcal\pink{\underline{\underline{OW \: }}}\large\mathcal\blue{\underline{\underline{ME}}}\star[/tex]
[tex]\star \: i \: hope \: you \: will \: understand \: me\star[/tex]