1. The pth, qth, rth terms of AP are a, b,c respectively. Show that: a(q + r) + b(r – p) + c(p – 9) = 0.​

1. The pth, qth, rth terms of AP are a, b,c respectively. Show that: a(q + r) + b(r – p) + c(p – 9) = 0.​

About the author
Aaliyah

1 thought on “1. The pth, qth, rth terms of AP are a, b,c respectively. Show that: a(q + r) + b(r – p) + c(p – 9) = 0.​”

  1. Correct Statement

    The pth, qth, rth terms of AP are a, b,c respectively. Show that: a(q – r) + b(r – p) + c(p – q) = 0.

    Answer

    [tex]\begin{gathered}\begin{gathered}\bf \:Given-\begin{cases} &\sf{a_p = a} \\ &\sf{a_q = b}\\ &\sf{a_r = c} \end{cases}\end{gathered}\end{gathered}[/tex]

    [tex]\large\underline{\sf{To\:show – }}[/tex]

    [tex] \: \: \: \: \: \: \bull \: \: \sf\: a(q – r) + b(r – p) + c(p – q) = 0[/tex]

    [tex]\large\underline{\sf{Solution-}}[/tex]

    Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

    ↝ nᵗʰ term of an arithmetic sequence is,

    [tex]\begin{gathered}\:\:{\underline{{\boxed{\bf{{a_n\:=\:A\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}[/tex]

    Wʜᴇʀᴇ,

    • aₙ is the nᵗʰ term.
    • A is the first term of the sequence.
    • n is the no. of terms.
    • d is the common difference.

    Tʜᴜs,

    ↝ pᵗʰ term is,

    [tex]\rm :\longmapsto\:\begin{gathered}\bf{a_p\:=\:A\:+\:(p\:-\:1)\:d} \\ \end{gathered}[/tex]

    ➣ It is given that pᵗʰ term is a.

    [tex]\rm :\longmapsto\:\begin{gathered}\bf{\boxed{ \sf \: a\:=\:A\:+\:(p\:-\:1)\:d}}–(i) \\ \end{gathered}[/tex]

    Aɢᴀɪɴ,

    ↝ qᵗʰ term is,

    [tex]\rm :\longmapsto\:\begin{gathered}\bf{a_q\:=\:A\:+\:(q\:-\:1)\:d} \\ \end{gathered}[/tex]

    ➣ It is given that qᵗʰ term is b.

    [tex]\rm :\longmapsto\:\begin{gathered}\bf{\boxed{ \sf \: b\:=\:A\:+\:(q\:-\:1)\:d}}–(ii) \\ \end{gathered}[/tex]

    Aɢᴀɪɴ,

    ↝ rᵗʰ term is,

    [tex]\rm :\longmapsto\:\begin{gathered}\bf{a_r\:=\:A\:+\:(r\:-\:1)\:d} \\ \end{gathered}[/tex]

    ➣ It is given that rᵗʰ term is c.

    [tex]\rm :\longmapsto\:\begin{gathered}\bf{\boxed{ \sf \: c\:=\:A\:+\:(r\:-\:1)\:d}}–(iii) \\ \end{gathered}[/tex]

    Now,

    ↝ Consider,

    [tex]\rm :\longmapsto\:\sf\: a(q – r) + b(r – p) + c(p – q)[/tex]

    On substituting the values of a, b and c, we get

    [tex] \sf \: = \bigg( A + (p – 1)d\bigg)(q – r)+\bigg(A+(q – 1)d\bigg)(r – p)+ \\ \sf \: \bigg(A + (r – 1)d \bigg)(p – q) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]

    [tex] \sf \: = A(q – r)+A(r – p)+A(p – q) + d(p – 1)(q – r) + \\ \sf \: d(q – 1)(r – p) + d(r – 1)(p – q) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]

    [tex] \sf \: = A\bigg( \cancel{p} – \cancel{q} + \cancel{q} – \cancel{r} + \cancel{r} – \cancel{p} \bigg) + d(pq – pr – q + r) + \\ \sf \: d(qr – pq – r + p) + d(rp – rq – p + q) \: \: \: \: \: \: \: \: \: \: \: \: [/tex]

    [tex] \sf \: = 0 + d(pq – pr – r + p + qr – pq – r + p + rp – rq – p + q)[/tex]

    [tex] \sf \: = 0[/tex]

    [tex]{\boxed{\boxed{\bf{Hence, Proved}}}}[/tex]

    Additional Information :-

    Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

    ↝ Sum of first n terms of an arithmetic sequence is,

    [tex] \: \: \: \: \: \: \large\boxed{ \sf \: S_n \: = \: \dfrac{n}{2}\bigg(2a + (n – 1)d \bigg)} [/tex]

    Wʜᴇʀᴇ,

    • Sₙ is the sum of first n terms.
    • a is the first term of the sequence.
    • n is the no. of terms.
    • d is the common difference.

    Reply

Leave a Comment