1. The pth, qth, rth terms of AP are a, b,c respectively. Show that: a(q + r) + b(r – p) + c(p – 9) = 0. About the author Aaliyah
Correct Statement The pth, qth, rth terms of AP are a, b,c respectively. Show that: a(q – r) + b(r – p) + c(p – q) = 0. Answer [tex]\begin{gathered}\begin{gathered}\bf \:Given-\begin{cases} &\sf{a_p = a} \\ &\sf{a_q = b}\\ &\sf{a_r = c} \end{cases}\end{gathered}\end{gathered}[/tex] [tex]\large\underline{\sf{To\:show – }}[/tex] [tex] \: \: \: \: \: \: \bull \: \: \sf\: a(q – r) + b(r – p) + c(p – q) = 0[/tex] [tex]\large\underline{\sf{Solution-}}[/tex] Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ, ↝ nᵗʰ term of an arithmetic sequence is, [tex]\begin{gathered}\:\:{\underline{{\boxed{\bf{{a_n\:=\:A\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}[/tex] Wʜᴇʀᴇ, aₙ is the nᵗʰ term. A is the first term of the sequence. n is the no. of terms. d is the common difference. Tʜᴜs, ↝ pᵗʰ term is, [tex]\rm :\longmapsto\:\begin{gathered}\bf{a_p\:=\:A\:+\:(p\:-\:1)\:d} \\ \end{gathered}[/tex] ➣ It is given that pᵗʰ term is a. [tex]\rm :\longmapsto\:\begin{gathered}\bf{\boxed{ \sf \: a\:=\:A\:+\:(p\:-\:1)\:d}}–(i) \\ \end{gathered}[/tex] Aɢᴀɪɴ, ↝ qᵗʰ term is, [tex]\rm :\longmapsto\:\begin{gathered}\bf{a_q\:=\:A\:+\:(q\:-\:1)\:d} \\ \end{gathered}[/tex] ➣ It is given that qᵗʰ term is b. [tex]\rm :\longmapsto\:\begin{gathered}\bf{\boxed{ \sf \: b\:=\:A\:+\:(q\:-\:1)\:d}}–(ii) \\ \end{gathered}[/tex] Aɢᴀɪɴ, ↝ rᵗʰ term is, [tex]\rm :\longmapsto\:\begin{gathered}\bf{a_r\:=\:A\:+\:(r\:-\:1)\:d} \\ \end{gathered}[/tex] ➣ It is given that rᵗʰ term is c. [tex]\rm :\longmapsto\:\begin{gathered}\bf{\boxed{ \sf \: c\:=\:A\:+\:(r\:-\:1)\:d}}–(iii) \\ \end{gathered}[/tex] Now, ↝ Consider, [tex]\rm :\longmapsto\:\sf\: a(q – r) + b(r – p) + c(p – q)[/tex] On substituting the values of a, b and c, we get [tex] \sf \: = \bigg( A + (p – 1)d\bigg)(q – r)+\bigg(A+(q – 1)d\bigg)(r – p)+ \\ \sf \: \bigg(A + (r – 1)d \bigg)(p – q) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex] [tex] \sf \: = A(q – r)+A(r – p)+A(p – q) + d(p – 1)(q – r) + \\ \sf \: d(q – 1)(r – p) + d(r – 1)(p – q) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex] [tex] \sf \: = A\bigg( \cancel{p} – \cancel{q} + \cancel{q} – \cancel{r} + \cancel{r} – \cancel{p} \bigg) + d(pq – pr – q + r) + \\ \sf \: d(qr – pq – r + p) + d(rp – rq – p + q) \: \: \: \: \: \: \: \: \: \: \: \: [/tex] [tex] \sf \: = 0 + d(pq – pr – r + p + qr – pq – r + p + rp – rq – p + q)[/tex] [tex] \sf \: = 0[/tex] [tex]{\boxed{\boxed{\bf{Hence, Proved}}}}[/tex] Additional Information :- Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ, ↝ Sum of first n terms of an arithmetic sequence is, [tex] \: \: \: \: \: \: \large\boxed{ \sf \: S_n \: = \: \dfrac{n}{2}\bigg(2a + (n – 1)d \bigg)} [/tex] Wʜᴇʀᴇ, Sₙ is the sum of first n terms. a is the first term of the sequence. n is the no. of terms. d is the common difference. Reply
Correct Statement
The pth, qth, rth terms of AP are a, b,c respectively. Show that: a(q – r) + b(r – p) + c(p – q) = 0.
Answer
[tex]\begin{gathered}\begin{gathered}\bf \:Given-\begin{cases} &\sf{a_p = a} \\ &\sf{a_q = b}\\ &\sf{a_r = c} \end{cases}\end{gathered}\end{gathered}[/tex]
[tex]\large\underline{\sf{To\:show – }}[/tex]
[tex] \: \: \: \: \: \: \bull \: \: \sf\: a(q – r) + b(r – p) + c(p – q) = 0[/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,
↝ nᵗʰ term of an arithmetic sequence is,
[tex]\begin{gathered}\:\:{\underline{{\boxed{\bf{{a_n\:=\:A\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}[/tex]
Wʜᴇʀᴇ,
Tʜᴜs,
↝ pᵗʰ term is,
[tex]\rm :\longmapsto\:\begin{gathered}\bf{a_p\:=\:A\:+\:(p\:-\:1)\:d} \\ \end{gathered}[/tex]
➣ It is given that pᵗʰ term is a.
[tex]\rm :\longmapsto\:\begin{gathered}\bf{\boxed{ \sf \: a\:=\:A\:+\:(p\:-\:1)\:d}}–(i) \\ \end{gathered}[/tex]
Aɢᴀɪɴ,
↝ qᵗʰ term is,
[tex]\rm :\longmapsto\:\begin{gathered}\bf{a_q\:=\:A\:+\:(q\:-\:1)\:d} \\ \end{gathered}[/tex]
➣ It is given that qᵗʰ term is b.
[tex]\rm :\longmapsto\:\begin{gathered}\bf{\boxed{ \sf \: b\:=\:A\:+\:(q\:-\:1)\:d}}–(ii) \\ \end{gathered}[/tex]
Aɢᴀɪɴ,
↝ rᵗʰ term is,
[tex]\rm :\longmapsto\:\begin{gathered}\bf{a_r\:=\:A\:+\:(r\:-\:1)\:d} \\ \end{gathered}[/tex]
➣ It is given that rᵗʰ term is c.
[tex]\rm :\longmapsto\:\begin{gathered}\bf{\boxed{ \sf \: c\:=\:A\:+\:(r\:-\:1)\:d}}–(iii) \\ \end{gathered}[/tex]
Now,
↝ Consider,
[tex]\rm :\longmapsto\:\sf\: a(q – r) + b(r – p) + c(p – q)[/tex]
On substituting the values of a, b and c, we get
[tex] \sf \: = \bigg( A + (p – 1)d\bigg)(q – r)+\bigg(A+(q – 1)d\bigg)(r – p)+ \\ \sf \: \bigg(A + (r – 1)d \bigg)(p – q) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
[tex] \sf \: = A(q – r)+A(r – p)+A(p – q) + d(p – 1)(q – r) + \\ \sf \: d(q – 1)(r – p) + d(r – 1)(p – q) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
[tex] \sf \: = A\bigg( \cancel{p} – \cancel{q} + \cancel{q} – \cancel{r} + \cancel{r} – \cancel{p} \bigg) + d(pq – pr – q + r) + \\ \sf \: d(qr – pq – r + p) + d(rp – rq – p + q) \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
[tex] \sf \: = 0 + d(pq – pr – r + p + qr – pq – r + p + rp – rq – p + q)[/tex]
[tex] \sf \: = 0[/tex]
[tex]{\boxed{\boxed{\bf{Hence, Proved}}}}[/tex]
Additional Information :-
Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,
↝ Sum of first n terms of an arithmetic sequence is,
[tex] \: \: \: \: \: \: \large\boxed{ \sf \: S_n \: = \: \dfrac{n}{2}\bigg(2a + (n – 1)d \bigg)} [/tex]
Wʜᴇʀᴇ,