Divide using factorisation
[tex] ({m}^{2} – 14m – 32) \div (m + 2)[/tex]

Divide using factorisation
[tex] ({m}^{2} – 14m – 32) \div (m + 2)[/tex]

About the author
Faith

1 thought on “Divide using factorisation <br />[tex] ({m}^{2} – 14m – 32) \div (m + 2)[/tex]<br />​”

  1. [tex]\large\sf\underline{Given\::}[/tex]

    • [tex]\sf\:\frac{m^{2}-14m-32}{(m+2) }[/tex]

    [tex]\large\sf\underline{To\::}[/tex]

    • Divide the given expression

    [tex]\large\sf\underline{Solution\::}[/tex]

    [tex]\sf\:\frac{m^{2}-14m-32}{(m+2) }[/tex]

    • Let’s factorise the numerator by middle term breaking

    So for factorising we need such two terms whose product gives us 32 and whose sum or difference would give us middle term ( 14 ) .

    That two terms would be 16 and 2 .

    • 16 × 2 = 32
    • 16 – 2 = 14

    Now substituting the two terms in the expression :

    [tex]\sf\longrightarrow\:\frac{m^{2}-(16-2)m-32}{(m+2) }[/tex]

    • Multiplying the terms in numerator

    [tex]\sf\longrightarrow\:\frac{m^{2}-16m+2m-32}{(m+2) }[/tex]

    • Taking m from first two terms and 2 from second two terms as common in numerator

    [tex]\sf\longrightarrow\:\frac{m(m-16)+2(m-16)}{(m+2) }[/tex]

    • Taking ( m 16 ) common from whole terms in numerator

    [tex]\sf\longrightarrow\:\frac{(m-16)(m+2)}{(m+2) }[/tex]

    [tex]\sf\longrightarrow\:\frac{(m-16)\cancel{(m+2)}}{\cancel{(m+2)}}[/tex]

    [tex]\small\fbox\red{★\:(\:m\:-\:16\:)}[/tex]

    !! Hope it helps !!

    Reply

Leave a Comment