If f(x)=5×3+4×2−13x−25f(x)=5×3+4×2−13x−25 and f(x−3)=5×3−41×2+98x+kf(x−3)=5×3−41×2+98x+k , then k=​

If f(x)=5×3+4×2−13x−25f(x)=5×3+4×2−13x−25 and f(x−3)=5×3−41×2+98x+kf(x−3)=5×3−41×2+98x+k , then k=​

About the author
Isabella

1 thought on “If f(x)=5×3+4×2−13x−25f(x)=5×3+4×2−13x−25 and f(x−3)=5×3−41×2+98x+kf(x−3)=5×3−41×2+98x+k , then k=​”

  1. Answer:

    K = -229

    Step-by-step explanation:

    f(x)= 5×3+4×2−13x−25 → (1)

    f(x−3)=5×3−41×2+98x+k → (2)

    # apply x = 0 in (1)

    so,

    f(0) = 5×3+4×2−13(0)−25

    f(0) = 15 + 8 – 0 – 25

    f(0) = 23- 25

    f(0) = -2 → (3)

    # apply x = 3 in (2)

    so,

    f(3-3) = 5×3−41×2+98(3)+k

    f(0) = 15 – 82 + 294 + k

    f(0) = 227 + k →(4)

    # compare (3) and (4)

    so,

    227 + k = -2

    k = -2 -227

    k = -229

    Reply

Leave a Comment