find the value of the k for which equation (k-5)x2+2(k-5)x+2=0 has real and equal roots About the author Elliana
Answer: Step-by-step explanation: The quadratic equation (k-5)x2 + 2(k-5)x + 2 = 0 have equal roots. ⇒ Discriminant (b2 – 4ac) = 0 ⇒ [2(k-5)]2 – 4(k-5)(2) = 0 ⇒ 4(k2 – 10k + 25) -(8k – 40) = 0 ⇒ 4k2 – 40k + 100 – 8k + 40 = 0 ⇒ 4k2 – 48k + 140 = 0 ⇒ k2 – 12k + 35 = 0 ⇒ (k – 7)(k – 5) = 0 ⇒ k = 7 or 5 Reply
Solution: Given that: [tex]\bigstar\tt{(k-5)x^2+2(k-5)x+2=0}[/tex] has real and equal roots. We need to find: [tex]\bigstar[/tex] The value of k in [tex]\tt{(k-5)x^2+2(k-5)x+2=0}[/tex] It was given that the equation has real and equal roots. That means, the Discriminant of the equation is 0. [tex]\tt{\Rightarrow D = b^2-4ac}[/tex] [tex]\boxed{\red{\bf{\Rightarrow b^2-4ac=0}}}\bigstar[/tex] [tex]\bigstar\tt{(k-5)x^2+2(k-5)x+2=0}[/tex] Let us see what are all the values of a, b and c here: b = 2(k-5) = 2k-10 a = k-5 c = 2 Let us apply the values of a, b and c in our discriminant formula to find k: [tex]\tt{\Rightarrow b^2-4ac = 0}[/tex] [tex]\tt{\Rightarrow (2k-10)^2-4 \times (k-5) \times 2 = 0}[/tex] Let us use the identity, (a-b)² = a²+b²-2ab in [tex]\sf{(2k-10)^2}[/tex]: [tex]\tt{\Rightarrow 4k^2+100-40k-8 \times (k-5) = 0}[/tex] [tex]\tt{\Rightarrow 4k^2+100-40k-8k+40 = 0}[/tex] [tex]\tt{\Rightarrow 4k^2-48k+140 = 0}[/tex] [tex]\tt{\Rightarrow 4(k^2-12k+35) = 0}[/tex] [tex]\tt{\Rightarrow k^2-12k+35 = \dfrac{0}{4}}[/tex] [tex]\boxed{\green{\bf{\Rightarrow k^2-12k+35 = 0}}}[/tex] Now, we have formed a quadratic equation. Let us solve this equation by using factorisation method: [tex]\tt{\Rightarrow k^2-12k+35 = 0}[/tex] -12k can be splitted as (-7k) + (-5k). This is the first step and also called as splitting the middle term. [tex]\tt{\Rightarrow k^2-7k-5k+35 = 0}[/tex] Let us take k and -5 as common factors. [tex]\tt{\Rightarrow k(k-7)-5(k-7) = 0}[/tex] Now, convert the equation in factorized form [tex]\tt{\Rightarrow (k-5)(k-7) = 0}[/tex] [tex]\tt{\Rightarrow k-5=0\:or\:k-7= 0}[/tex] [tex]\tt{\Rightarrow k=5\:or\:k= 7}[/tex] We have obtained k value as 5 and 7. Now, let us substitute the value of k=5 in [tex]\sf{(k-5)x^2+2(k-5)x+2=0}[/tex]: [tex]\tt{\Rightarrow (k-5)x^2+2(k-5)x+2=0}[/tex] [tex]\tt{\Rightarrow (5-5)x^2+2(5-5)x+2=0}[/tex] [tex]\tt{\Rightarrow 0x^2+0x+2=0}[/tex] [tex]\tt{\Rightarrow 0+0+2=0}[/tex] [tex]\boxed{\pink{\bf{\Rightarrow 2=0}}}[/tex] But we know that 2 is not equal to 0. So, k = 5 is rejected. Hence, k = 7 is our required value. [tex]\boxed{\orange{\bf{\Rightarrow k=7}}}\checkmark[/tex] Reply
Answer:
Step-by-step explanation:
The quadratic equation (k-5)x2 + 2(k-5)x + 2 = 0 have equal roots.
⇒ Discriminant (b2 – 4ac) = 0
⇒ [2(k-5)]2 – 4(k-5)(2) = 0
⇒ 4(k2 – 10k + 25) -(8k – 40) = 0
⇒ 4k2 – 40k + 100 – 8k + 40 = 0
⇒ 4k2 – 48k + 140 = 0
⇒ k2 – 12k + 35 = 0
⇒ (k – 7)(k – 5) = 0
⇒ k = 7 or 5
Solution:
Given that:
[tex]\bigstar\tt{(k-5)x^2+2(k-5)x+2=0}[/tex] has real and equal roots.
We need to find:
[tex]\bigstar[/tex] The value of k in [tex]\tt{(k-5)x^2+2(k-5)x+2=0}[/tex]
It was given that the equation has real and equal roots. That means, the Discriminant of the equation is 0.
[tex]\tt{\Rightarrow D = b^2-4ac}[/tex]
[tex]\boxed{\red{\bf{\Rightarrow b^2-4ac=0}}}\bigstar[/tex]
[tex]\bigstar\tt{(k-5)x^2+2(k-5)x+2=0}[/tex]
Let us see what are all the values of a, b and c here:
Let us apply the values of a, b and c in our discriminant formula to find k:
[tex]\tt{\Rightarrow b^2-4ac = 0}[/tex]
[tex]\tt{\Rightarrow (2k-10)^2-4 \times (k-5) \times 2 = 0}[/tex]
Let us use the identity, (a-b)² = a²+b²-2ab in [tex]\sf{(2k-10)^2}[/tex]:
[tex]\tt{\Rightarrow 4k^2+100-40k-8 \times (k-5) = 0}[/tex]
[tex]\tt{\Rightarrow 4k^2+100-40k-8k+40 = 0}[/tex]
[tex]\tt{\Rightarrow 4k^2-48k+140 = 0}[/tex]
[tex]\tt{\Rightarrow 4(k^2-12k+35) = 0}[/tex]
[tex]\tt{\Rightarrow k^2-12k+35 = \dfrac{0}{4}}[/tex]
[tex]\boxed{\green{\bf{\Rightarrow k^2-12k+35 = 0}}}[/tex]
Now, we have formed a quadratic equation. Let us solve this equation by using factorisation method:
[tex]\tt{\Rightarrow k^2-12k+35 = 0}[/tex]
[tex]\tt{\Rightarrow k^2-7k-5k+35 = 0}[/tex]
[tex]\tt{\Rightarrow k(k-7)-5(k-7) = 0}[/tex]
[tex]\tt{\Rightarrow (k-5)(k-7) = 0}[/tex]
[tex]\tt{\Rightarrow k-5=0\:or\:k-7= 0}[/tex]
[tex]\tt{\Rightarrow k=5\:or\:k= 7}[/tex]
Now, let us substitute the value of k=5 in [tex]\sf{(k-5)x^2+2(k-5)x+2=0}[/tex]:
[tex]\tt{\Rightarrow (k-5)x^2+2(k-5)x+2=0}[/tex]
[tex]\tt{\Rightarrow (5-5)x^2+2(5-5)x+2=0}[/tex]
[tex]\tt{\Rightarrow 0x^2+0x+2=0}[/tex]
[tex]\tt{\Rightarrow 0+0+2=0}[/tex]
[tex]\boxed{\pink{\bf{\Rightarrow 2=0}}}[/tex]
But we know that 2 is not equal to 0. So, k = 5 is rejected.
Hence, k = 7 is our required value.
[tex]\boxed{\orange{\bf{\Rightarrow k=7}}}\checkmark[/tex]