In the figure, 0 is the centrecircle. ZPOQ=50°, then what is the measureof arc PXQ and arc PYQ? About the author Vivian
Answer: 100 degree Step-by-step explanation: We know, that radius is perpendicular to a tangent . ∴ ∠OPR=90 o ⇒ ∠OPQ+∠QPR=90 o ⇒ ∠OPQ+50 o =90 o ⇒ ∠OPQ=90 o −50 o ⇒ ∠OPQ=40 o ⇒ OP=OQ [ Radii of a circle ] ⇒ ∠OPQ=∠OQP=40 o [ Base angles of equal sides are also equal ] In △POQ, ⇒ ∠OQP+∠POQ+∠OPQ=180 o [ Sum of angles of a triangle is 180 o ] ⇒ 40 o +∠POQ+40 o =180 o ⇒ ∠POQ+80=180 o ⇒ ∠POQ=100 o Reply
Step-by-step explanation:
please send the picture of this question.
Answer:
100 degree
Step-by-step explanation:
We know, that radius is perpendicular to a tangent .
∴ ∠OPR=90
o
⇒ ∠OPQ+∠QPR=90
o
⇒ ∠OPQ+50
o
=90
o
⇒ ∠OPQ=90
o
−50
o
⇒ ∠OPQ=40
o
⇒ OP=OQ [ Radii of a circle ]
⇒ ∠OPQ=∠OQP=40
o
[ Base angles of equal sides are also equal ]
In △POQ,
⇒ ∠OQP+∠POQ+∠OPQ=180
o
[ Sum of angles of a triangle is 180
o
]
⇒ 40
o
+∠POQ+40
o
=180
o
⇒ ∠POQ+80=180
o
⇒ ∠POQ=100
o