Consider a rectangle that has a perimeter of [tex]80\ \text{cm}[/tex]. Write a function [tex]A(l)[/tex] that represents the area of the rectangle with length [tex]l[/tex]. About the author Melody
[tex]\large\underline{\sf{Given- }}[/tex] [tex]\rm :\longmapsto\:Length_{(rectangle)} \: = \: L \: cm[/tex] [tex]\rm :\longmapsto\:Perimeter_{(rectangle)} = \: 80 \: cm[/tex] [tex]\large\underline{\sf{To\:Find – }}[/tex] [tex]\rm :\longmapsto\:Area_{(rectangle)}[/tex] [tex]\begin{gathered}\Large{\bold{{\underline{Formula \: Used – }}}} \end{gathered}[/tex] [tex] \boxed{ \sf \: Area_{(rectangle)} = Length_{(rectangle)} \times Breadth_{(rectangle)}}[/tex] [tex] \boxed{ \sf \: Perimeter_{(rectangle)} = 2(Length_{(rectangle)} + Breadth_{(rectangle)})}[/tex] [tex]\large\underline{\sf{Solution-}}[/tex] Given that , Length of rectangle = L cm Let Breadth of rectangle = ‘b’ cm Since, Perimeter of rectangle = 80 cm We know, [tex] \sf \: Perimeter_{(rectangle)} = 2(Length_{(rectangle)} + Breadth_{(rectangle)})[/tex] [tex]\rm :\longmapsto\:80 = 2(L + b)[/tex] [tex]\rm :\longmapsto\:L \: + \: b \: = \: 40[/tex] [tex]\bf\implies \:b \: = \: 40 – L \: – – – (1)[/tex] Now, We have, Length of rectangle = L cm Breadth of rectangle, b = (40 – L) cm So, Area of rectangle is [tex] \sf \: Area_{(rectangle)} = Length_{(rectangle)} \times Breadth_{(rectangle)}[/tex] [tex]\rm :\longmapsto\:Area_{(rectangle)} = L \: \times \: (40 – L)[/tex] [tex]\rm :\longmapsto\:Area_{(rectangle)} = 40L\: – \: {L}^{2} [/tex] Additional Information :- [tex] \boxed{ \sf \: Area_{(square)} = {(side)}^{2}} [/tex] [tex] \boxed{ \sf \: Area_{(circle)} = \pi \: {r}^{2} }[/tex] [tex] \boxed{ \sf \: Perimeter_{(square)} = 4 \times side}[/tex] [tex] \boxed{ \sf \: Perimeter_{(circle)} = 2\pi \: r}[/tex] [tex] \boxed{ \sf \: Area_{(right \: \triangle)} = \dfrac{1}{2} \times base \times height}[/tex] [tex] \boxed{ \sf \: Area_{(parallelogram)} = base \times height}[/tex] [tex]\boxed{ \sf \: Area_{(rhombus)}=base \times height=\dfrac{1}{2}(product \: of \: diagonals)}[/tex] Reply
[tex]\large\underline{\sf{Given- }}[/tex]
[tex]\rm :\longmapsto\:Length_{(rectangle)} \: = \: L \: cm[/tex]
[tex]\rm :\longmapsto\:Perimeter_{(rectangle)} = \: 80 \: cm[/tex]
[tex]\large\underline{\sf{To\:Find – }}[/tex]
[tex]\rm :\longmapsto\:Area_{(rectangle)}[/tex]
[tex]\begin{gathered}\Large{\bold{{\underline{Formula \: Used – }}}} \end{gathered}[/tex]
[tex] \boxed{ \sf \: Area_{(rectangle)} = Length_{(rectangle)} \times Breadth_{(rectangle)}}[/tex]
[tex] \boxed{ \sf \: Perimeter_{(rectangle)} = 2(Length_{(rectangle)} + Breadth_{(rectangle)})}[/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
Given that ,
Let
Since,
We know,
[tex] \sf \: Perimeter_{(rectangle)} = 2(Length_{(rectangle)} + Breadth_{(rectangle)})[/tex]
[tex]\rm :\longmapsto\:80 = 2(L + b)[/tex]
[tex]\rm :\longmapsto\:L \: + \: b \: = \: 40[/tex]
[tex]\bf\implies \:b \: = \: 40 – L \: – – – (1)[/tex]
Now,
We have,
So,
Area of rectangle is
[tex] \sf \: Area_{(rectangle)} = Length_{(rectangle)} \times Breadth_{(rectangle)}[/tex]
[tex]\rm :\longmapsto\:Area_{(rectangle)} = L \: \times \: (40 – L)[/tex]
[tex]\rm :\longmapsto\:Area_{(rectangle)} = 40L\: – \: {L}^{2} [/tex]
Additional Information :-
[tex] \boxed{ \sf \: Area_{(square)} = {(side)}^{2}} [/tex]
[tex] \boxed{ \sf \: Area_{(circle)} = \pi \: {r}^{2} }[/tex]
[tex] \boxed{ \sf \: Perimeter_{(square)} = 4 \times side}[/tex]
[tex] \boxed{ \sf \: Perimeter_{(circle)} = 2\pi \: r}[/tex]
[tex] \boxed{ \sf \: Area_{(right \: \triangle)} = \dfrac{1}{2} \times base \times height}[/tex]
[tex] \boxed{ \sf \: Area_{(parallelogram)} = base \times height}[/tex]
[tex]\boxed{ \sf \: Area_{(rhombus)}=base \times height=\dfrac{1}{2}(product \: of \: diagonals)}[/tex]
It is the correct answer.
Step-by-step explanation:
Hope this attachment helps you.