Show that the swap rate for a standard swap with level notional amount is the same as the at-par yield rate for a bond with same t

Show that the swap rate for a standard swap with level notional amount is the same as the at-par yield rate for a bond with same time to maturity as the length of the swap. At-par yield was defined in Chapter 6 as coupon rate r at which a bond would have a yield to maturity of r under the current term structure.

About the author
Adeline

2 thoughts on “Show that the swap rate for a standard swap with level notional amount is the same as the at-par yield rate for a bond with same t”

  1. Step-by-step explanation:

    [tex]\orange{\bold{\underbrace{\overbrace{❥Question᎓}}}}[/tex]

    Integrate the function

    [tex]\huge\green\tt\frac{ \sqrt{tanx} }{sinxcosx}}[/tex]

    ⇛[tex]\huge\tt\frac{ \sqrt{tanx} }{sinxcosx}[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt \frac{ \sqrt{tanx} }{sinxcosx \times \frac{cosx}{cosx}}[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt \frac{ \sqrt{tanx} }{sinx \times \frac{ {cos}^{2} x}{cosx}}[/tex] ㅤ ㅤ ㅤ

    ⇛ [tex]\huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2} x \times \frac{sinx}{cosx} }[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2}x \times tanx }[/tex]

    ⇛[tex]\huge\tt {tan}^{ \frac{1}{2} – 1 } \times \frac{1}{ {cos}^{2} x}[/tex]ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt {(tan)}^{ – \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = {(tanx)}^{ – \frac{1}{2} } \times {sec}^{2} x⇛(tan)[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt {(tan)}^{ – \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = ∫ {(tanx)}^{ – \frac{1}{2} } \times {sec}^{2} x \times dx⇛(tan)[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    [tex]\bold\blue{☛\: Let tanx=t}[/tex]

    [tex]\bold\blue{☛ \:Differentiating \: both \: sides \: w.r.t.x}[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt {sec}^{2} x = \frac{dt}{dx}[/tex]

    ⇛[tex]\huge\tt{dx \frac{dt}{ {sec}^{2}x }}[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt∴∫ {(tanx)}^{ – \frac{1}{2} } \times {sec}^{2} x \times dx[/tex]

    ⇛[tex]\huge\tt ∫ {(t)}^{ – \frac{1}{2} } \times {sec}^{2} x \times \frac{dt}{ {sec}^{2}x }[/tex]

    ⇛[tex]\huge\tt ∫ {t}^{ – \frac{1}{2} }[/tex]ㅤ ㅤ

    ⇛ [tex]\huge\tt\frac{ {t}^{ – \frac{1}{2} + 1} }{ – \frac{1}{2} + 1 }[/tex]

    ⇛ [tex]\huge\tt \frac{ {t}^{ \frac{1}{2} } }{ \frac{1}{2} } + c = 2 {t}^{ \frac{1}{2} } + c = 2 \sqrt{t}[/tex]

    ⇛[tex]\huge2 \sqrt{t} + c = 2 \sqrt{tanx}[/tex]

    ╚════════════════════════

    Reply

Leave a Comment