A chord 6 cm long is drawn in a circle with a diameter equal to 10 cm. Then the perpendicular distance from the centre is About the author Caroline
O is the centre of circle, radius of the circle=OA=r=10 cm, AB = ?, OC = 6 cm, C is point on chord AB & OC perpendicular to AB. [tex]\text{Now, In right triangle OAC,}[/tex] [tex]\boxed{\bf{By\: Pythagoras\: Theorem}}[/tex] [tex]\sf OA ² = AC² + CO²[/tex] [tex]\sf Or, AC² = OA² – CO²[/tex] [tex]\sf Or, AC² = 10² – 6² = 100 – 36 = 64[/tex] [tex]\sf Or, AC² = 100 – 36[/tex] [tex]\sf Or, AC² = 64[/tex] [tex]\sf Or, AC² = 8²[/tex] [tex]\sf Or, AC = 8[/tex] [tex]\sf Or AB = AC + CB[/tex] [tex]\sf Or AB = 8 + 8 ———– (AC = CB)[/tex] Or AB = 16 cm Therefore, length of chord = AB = 16 cm Reply
O is the centre of circle, radius of the circle=OA=r=10 cm, AB = ?, OC = 6 cm, C is point on chord AB & OC perpendicular to AB.
[tex]\text{Now, In right triangle OAC,}[/tex]
[tex]\boxed{\bf{By\: Pythagoras\: Theorem}}[/tex]
[tex]\sf OA ² = AC² + CO²[/tex]
[tex]\sf Or, AC² = OA² – CO²[/tex]
[tex]\sf Or, AC² = 10² – 6² = 100 – 36 = 64[/tex]
[tex]\sf Or, AC² = 100 – 36[/tex]
[tex]\sf Or, AC² = 64[/tex]
[tex]\sf Or, AC² = 8²[/tex]
[tex]\sf Or, AC = 8[/tex]
[tex]\sf Or AB = AC + CB[/tex]
[tex]\sf Or AB = 8 + 8 ———– (AC = CB)[/tex]
Or AB = 16 cm
Therefore, length of chord = AB = 16 cm