Required Answer:- Given: sin α = 1/√2. To Find: tan α. Solution: Given that, → sin α = 1/√2 So, → sin²α = (1/√2)² → sin²α = 1/2 We know that, → sin²α + cos²α = 1 So, → 1/2 + cos²α = 1 → cos²α = 1 – 1/2 → cos²α = (2 – 1)/2 → cos²α = 1/2 → cos α = 1/√2 So, the value of tan α will be, = sin α/cos α = 1/√2 ÷ 1/√2 = 1/√2 × √2 = 1 Therefore, → tan α = 1 Answer: tan α = 1 Formula Used: sin²α + cos²α = 1 tan α = sin α/cos α •••♪ Reply
Required Answer:-
Given:
To Find:
Solution:
Given that,
→ sin α = 1/√2
So,
→ sin²α = (1/√2)²
→ sin²α = 1/2
We know that,
→ sin²α + cos²α = 1
So,
→ 1/2 + cos²α = 1
→ cos²α = 1 – 1/2
→ cos²α = (2 – 1)/2
→ cos²α = 1/2
→ cos α = 1/√2
So, the value of tan α will be,
= sin α/cos α
= 1/√2 ÷ 1/√2
= 1/√2 × √2
= 1
Therefore,
→ tan α = 1
Answer:
Formula Used:
•••♪