4. The volume of a cylinder is 2512 cu cm and its height is 12.5 cm. Find the radius of the base.[tex](\pi = 3.14)[/tex] About the author Eloise
Step-by-step explanation: [tex]\pi \: r {}^{2} = 2512 \div 12.5 \\ = 200.96 \\ {r }^{2} = 200.96 \div 3.14 \\ = 64 \: (r = \sqrt{64 \: = 8}) [/tex] Reply
[tex]\huge\orange{\boxed{\underline{ANSWER}}}[/tex] GIVEN THAT: [tex]➾[/tex] The volume of cylinder = 2512 cm3 [tex]➾[/tex] Height of cylinde (h) = 12.5 cm FORMULA; [tex]➾[/tex] The volume of cylinder(V) = πr2h where, • r = radius of the bace of cylinder • h = Height of cylinder SOLUTIONS; [tex]➾[/tex] The volume of cylinder [tex]⟶ \: \: \pi {r}^{2} h = 2512 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ ⟶ \: \: 3.14 \times {r}^{2} \times 12.5 = 2512 \\ ⟶ \: \: 39.25 \times {r}^{2} = 2512 \: \: \: \: \: \: \: \: \: \: \: \\ ⟶ \: \: {r}^{2} = \cancel\frac{2512}{39.25} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ ⟶ \: \: {r}^{2} = 64 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ ⟶ \: \: r = \sqrt{64} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ ⟶ \: \: r = 8cm \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex] [tex]➾[/tex] So the radius of base of cylinder = 8 cm Reply
Step-by-step explanation:
[tex]\pi \: r {}^{2} = 2512 \div 12.5 \\ = 200.96 \\ {r }^{2} = 200.96 \div 3.14 \\ = 64 \: (r = \sqrt{64 \: = 8}) [/tex]
[tex]\huge\orange{\boxed{\underline{ANSWER}}}[/tex]
GIVEN THAT:
[tex]➾[/tex] The volume of cylinder = 2512 cm3
[tex]➾[/tex] Height of cylinde (h) = 12.5 cm
FORMULA;
[tex]➾[/tex] The volume of cylinder(V) = πr2h
where,
• r = radius of the bace of cylinder
• h = Height of cylinder
SOLUTIONS;
[tex]➾[/tex] The volume of cylinder
[tex]⟶ \: \: \pi {r}^{2} h = 2512 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ ⟶ \: \: 3.14 \times {r}^{2} \times 12.5 = 2512 \\ ⟶ \: \: 39.25 \times {r}^{2} = 2512 \: \: \: \: \: \: \: \: \: \: \: \\ ⟶ \: \: {r}^{2} = \cancel\frac{2512}{39.25} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ ⟶ \: \: {r}^{2} = 64 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ ⟶ \: \: r = \sqrt{64} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ ⟶ \: \: r = 8cm \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
[tex]➾[/tex] So the radius of base of cylinder = 8 cm