Find a ^3+ ß^3 , ifa and B are the zeroes of the polynomial
2 x^2 -x + 5​

Find a ^3+ ß^3 , ifa and B are the zeroes of the polynomial
2 x^2 -x + 5​

About the author
Mackenzie

2 thoughts on “Find a ^3+ ß^3 , ifa and B are the zeroes of the polynomial<br />2 x^2 -x + 5​”

  1. Answer:

    Given :-

    • α and β are the zeros of the polynomial 2x² – x + 5.

    To Find :-

    • What is the value of α³ + β³.

    Solution :-

    Given equation :

    [tex] \longmapsto[/tex] [tex] \sf 2{x}^{2} – x + 5 =\: 0[/tex]

    where,

    • a = 2
    • b = – 1
    • c = 5

    Now, we have to find the sum of two roots :

    [tex] \mapsto \sf\boxed{\bold{\pink{\alpha + \beta =\: – \dfrac{b}{a}}}}[/tex]

    Then,

    [tex] \implies \sf \alpha + \beta =\: – \dfrac{- 1}{2}[/tex]

    [tex] \implies \sf\bold{\purple{\alpha + \beta =\: \dfrac{1}{2}}}[/tex]

    Again, we have to find the product of two roots :

    [tex] \mapsto \sf\boxed{\bold{\pink{\alpha\beta =\: \dfrac{c}{a}}}}[/tex]

    Then,

    [tex] \implies \sf\bold{\purple{\alpha\beta =\: \dfrac{5}{2}}}[/tex]

    Now, we have to find the value of α³ + β³ :

    As we know that :

    + = (a + b)³ 3ab(a + b)

    According to the question by using the formula we get :

    [tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: {(\alpha + \beta)}^{3} – 3\alpha\beta(\alpha + \beta)\\[/tex]

    [tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: {\bigg(\dfrac{1}{2}\bigg)}^{3} – 3\bigg(\dfrac{5}{2}\bigg)\bigg(\dfrac{1}{2}\bigg)\\[/tex]

    [tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: \dfrac{1}{8} – 3 \times \dfrac{5}{2} \times \dfrac{1}{2}\\[/tex]

    [tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: \dfrac{1}{8} – 3 \times \dfrac{5}{4}\\[/tex]

    [tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: \dfrac{1}{8} – \dfrac{15}{4}\\[/tex]

    [tex] \leadsto \sf {\alpha}^{3} + {\beta}^{3} =\: \dfrac{1 – 30}{8}\\[/tex]

    [tex] \leadsto \sf\bold{\red{{\alpha}^{3} + {\beta}^{3} =\: \dfrac{- 29}{8}}}\\[/tex]

    [tex] \sf\boxed{\bold{\green{\therefore\: The\: value\: of\: {\alpha}^{3} + {\beta}^{3}\: is\: \dfrac{- 29}{8}.}}}[/tex]

    Reply
  2. Answer:-

    Given:-

    α and β are the roots of 2x² – x + 5.

    On comparing the given polynomial with the standard form of a quadratic equation i.e., ax² + bx + c = 0 we get;

    a = 2

    b = – 1

    c = 5.

    We know that;

    Sum of the roots = – b/a

    ⟹ α + β = – ( – 1) / 2

    ⟹ α + β = 1/2 — equation (1)

    And,

    product of the roots = c/a

    ⟹ αβ = 5/2 — equation (2)

    Now,

    we have to find:-

    ⟹ α³ + β³

    We know that;

    a³ + b³ = (a + b)³ – 3ab(a + b)

    Hence;

    ⟹ α³ + β³ = (α + β)³ – 3αβ(α + β)

    Putting the respective values from equations (1) and (2) we get;

    ⟹ α³ + β³ = (1/2)³ – 3(5/2)(1/2)

    ⟹ α³ + β³ = (1/8) – (15/4)

    ⟹ α³ + β³ = (1 – 30)/8

    ⟹ α³ + β³ = – 29/8

    The value of α³ + β³ is 29/8.

    Reply

Leave a Comment