Step-by-step explanation: Given: x=10pq/p+q To find: If x=10pq/p+q show that x+5p/x-5p + x+5q/x-5q Solution: From given, we have, x = 10pq/p+q we need to find x+5p / x-5p + x+5q / x-5q First, we need to substitute the value of x in given equation, x+5p / x-5p + x+5q / x-5q (10pq/p+q)+5p / (10pq/p+q)-5p + (10pq/p+q)+5q / (10pq/p+q)-5q further solving we get, \begin{gathered}\dfrac{\frac{10pq}{p+q}+5p}{\frac{10pq}{p+q}-5p}+\dfrac{\frac{10pq}{p+q}+5q}{\frac{10pq}{p+q}-5q}\\=\dfrac{p+3q}{q-p}+\dfrac{3p+q}{p-q}\\=\dfrac{-\left(p+3q\right)}{-\left(q-p\right)}+\dfrac{3p+q}{-\left(q-p\right)}\\=\dfrac{-\left(p+3q\right)+3p+q}{-\left(q-p\right)}\\=-\dfrac{-\left(p+3q\right)+3p+q}{q-p}\\=-\dfrac{2p-2q}{q-p}\\=-\dfrac{-2(q-p)}{q-p}\\=-(-2)\\=2\end{gathered} p+q 10pq −5p p+q 10pq +5p + p+q 10pq −5q p+q 10pq +5q = q−p p+3q + p−q 3p+q = −(q−p) −(p+3q) + −(q−p) 3p+q = −(q−p) −(p+3q)+3p+q =− q−p −(p+3q)+3p+q =− q−p 2p−2q =− q−p −2(q−p) =−(−2) =2 ∴ x+5p/x-5p + x+5q/x-5q = 2 Reply
Answer:
bhdjdjdjdidjdhdjfjfjfjfjjfjdjfkf
Step-by-step explanation:
Given:
x=10pq/p+q
To find:
If x=10pq/p+q show that x+5p/x-5p + x+5q/x-5q
Solution:
From given, we have,
x = 10pq/p+q
we need to find x+5p / x-5p + x+5q / x-5q
First, we need to substitute the value of x in given equation,
x+5p / x-5p + x+5q / x-5q
(10pq/p+q)+5p / (10pq/p+q)-5p + (10pq/p+q)+5q / (10pq/p+q)-5q
further solving we get,
\begin{gathered}\dfrac{\frac{10pq}{p+q}+5p}{\frac{10pq}{p+q}-5p}+\dfrac{\frac{10pq}{p+q}+5q}{\frac{10pq}{p+q}-5q}\\=\dfrac{p+3q}{q-p}+\dfrac{3p+q}{p-q}\\=\dfrac{-\left(p+3q\right)}{-\left(q-p\right)}+\dfrac{3p+q}{-\left(q-p\right)}\\=\dfrac{-\left(p+3q\right)+3p+q}{-\left(q-p\right)}\\=-\dfrac{-\left(p+3q\right)+3p+q}{q-p}\\=-\dfrac{2p-2q}{q-p}\\=-\dfrac{-2(q-p)}{q-p}\\=-(-2)\\=2\end{gathered}
p+q
10pq
−5p
p+q
10pq
+5p
+
p+q
10pq
−5q
p+q
10pq
+5q
=
q−p
p+3q
+
p−q
3p+q
=
−(q−p)
−(p+3q)
+
−(q−p)
3p+q
=
−(q−p)
−(p+3q)+3p+q
=−
q−p
−(p+3q)+3p+q
=−
q−p
2p−2q
=−
q−p
−2(q−p)
=−(−2)
=2
∴ x+5p/x-5p + x+5q/x-5q = 2