A rectangle is 15 meters long and its perimeter is the same as that of square whose side is 14 meters
ToFind:
The breadth of the rectangle
Solution:
➤ Here we’re given with the side of the square and the length of the rectangle. It is said that the perimeter of the square is equal to the perimeter of the rectangle and we’ve asked to find the breadth of the rectangle.
Given :
To Find :
Solution :
It is given that :
⟶⠀Square’s peri. = Rectangle’s peri.
⟶⠀4 × side = 2(Length + Breadth)
⟶⠀4 × 14 = 2(15 + Breadth)
⟶⠀56 = 2(15 + Breadth)
⟶⠀56/2 = 15 + Breadth
⟶⠀28 = 15 + Breadth
⟶⠀28 – 15 = Breadth
⟶⠀13m = Breadth
So, Breadth of the Rectangle is 13m
___________________
★ Additional Info :
Formulas Related to Rectangle:
Formulas Related to Square :
___________________
Given:
To Find:
Solution:
➤ Here we’re given with the side of the square and the length of the rectangle. It is said that the perimeter of the square is equal to the perimeter of the rectangle and we’ve asked to find the breadth of the rectangle.
★ Now,
As we know that,
[tex] \: \: \: \: \: \: \: \: \: \: \dag \bigg( \bf \: perimeter _{(square)} = 4 \times side \bigg)[/tex]
★ Where,
[tex]{ \underline{ \bf{ \bigstar \: Substituting \: the \: values : }}}[/tex]
[tex]{ : \implies} \sf \: Perimeter _{(square)} = 4 \times side \: \: \\ \\ \\ { : \implies} \sf \: Perimeter _{(square)} = 4 \times 14cm \\ \\ \\ { : \implies} \sf \: Perimeter _{(square)} = { \blue{ \boxed{ \frak{56cm}} \star}} \: \: \: [/tex]
★ We know that,
★ So,
★ Now,
As we know that,
[tex] \: \: \: \: \: \: \: \: \: \: \dag \bigg( \bf \: perimeter _{(rectangle)} = 2(lenght + breadth) \bigg)[/tex]
★ Where,
[tex]{ \underline{ \bf{ \bigstar \: Substituting \: the \: values : }}}[/tex]
[tex]{ : \implies} \sf \: Perimeter _{(rectangle)} = 2(lenght + breadth) \\ \\ \\ { : \implies} \sf 56cm = 2(15 + b) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies} \sf 56cm = 30 + 2b \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies} \sf 2b = 26cm \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies} \sf b = \frac{26}{2} cm \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies} \sf { \purple{\underline{ \boxed{\frak{b = 13cm}}}\star}}\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]