4. Find the ratio in which (-3, 9) divides the line segment joining the points (-5,-4) and (-2, 3). Find the value of q. About the author Caroline
Step-by-step explanation: Using the section formula, if a point (x,y) divides the line joining the points (x 1 ,y 1 ) and (x 2 ,y 2 ) in the ratio m 1 :m 2 , then (x,y)=( m 1 +m 2 m 1 x 2 +m 2 x 1 , m 1 +m 2 m 1 y 2 +m 2 y 1 ) Given that ratio m 1 :m 2 =xy points A(−5,−4) and B(−2,3) Let ratio be m 2 m 1 = 1 m Therefore, x= m 1 +m 2 m 1 x 2 +m 2 x 1 −3= m+1 m.(−2)+(1)(−5) −3(m+1)=−2m−5 −3m−3=−2m−5 −3+5=−2m+3m m=2 m 2 m 1 = 1 2 Now, k= m 1 +m 2 m 1 .y 2 +m 2 .y 1 k= 2+1 2.(3)+1(−4) k= 3 6−4 k=2/3 ∴k=2/3 Reply
Step-by-step explanation:
Using the section formula, if a point (x,y) divides the line joining the points (x
1
,y
1
) and (x
2
,y
2
) in the ratio m
1
:m
2
, then
(x,y)=(
m
1
+m
2
m
1
x
2
+m
2
x
1
,
m
1
+m
2
m
1
y
2
+m
2
y
1
)
Given that ratio m
1
:m
2
=xy
points A(−5,−4) and B(−2,3)
Let ratio be
m
2
m
1
=
1
m
Therefore,
x=
m
1
+m
2
m
1
x
2
+m
2
x
1
−3=
m+1
m.(−2)+(1)(−5)
−3(m+1)=−2m−5
−3m−3=−2m−5
−3+5=−2m+3m
m=2
m
2
m
1
=
1
2
Now, k=
m
1
+m
2
m
1
.y
2
+m
2
.y
1
k=
2+1
2.(3)+1(−4)
k=
3
6−4
k=2/3
∴k=2/3