Answer: LHS= cotA+cosA cotA−cosA = sinA cosA +cosA sinA cosA −cosA = cosA cosA × cosecA+1 cosecA−1 = cosecA+1 cosecA−1 =RHS Reply
Answer: Answer cosecθ+cotθ= cosecθ−cotθ 1 solving LHS. cosecθ+cotθ = (on rationalizing) (cosecθ−cotθ) (cosecθ+cotθ)(cosecθ−cotθ) cosecθ−cotθ cosec 2 θ−cot 2 θ = sin 2 θ 1 − sin 2 θ cos 2 θ [∵cosecθ= sinθ 1 cotθ= sinθ cosecθ ] cosecθ−cotθ sin 2 θ 1−cos 2 θ = cosecθ−cotθ 1 [∵1−cos 2 θ=sin 2 θ] $$\because L.H.S =\frac{1}{cosec\theta-cot\theta} = RHS. Step-by-step explanation: answer verified by topper Reply
Answer:
LHS=
cotA+cosA
cotA−cosA
=
sinA
cosA
+cosA
sinA
cosA
−cosA
=
cosA
cosA
×
cosecA+1
cosecA−1
=
cosecA+1
cosecA−1
=RHS
Answer:
Answer
cosecθ+cotθ=
cosecθ−cotθ
1
solving LHS.
cosecθ+cotθ = (on rationalizing)
(cosecθ−cotθ)
(cosecθ+cotθ)(cosecθ−cotθ)
cosecθ−cotθ
cosec
2
θ−cot
2
θ
=
sin
2
θ
1
−
sin
2
θ
cos
2
θ
[∵cosecθ=
sinθ
1
cotθ=
sinθ
cosecθ
]
cosecθ−cotθ
sin
2
θ
1−cos
2
θ
=
cosecθ−cotθ
1
[∵1−cos
2
θ=sin
2
θ]
$$\because L.H.S =\frac{1}{cosec\theta-cot\theta} = RHS.
Step-by-step explanation:
answer verified by topper