Using binomial theorem, prove that 32n+2 – 8n – 9 is divisible by 64.​

Using binomial theorem, prove that 32n+2 – 8n – 9 is divisible by 64.​

About the author
Isabelle

1 thought on “Using binomial theorem, prove that 32n+2 – 8n – 9 is divisible by 64.​”

  1. Question:

    Using binomial theorem, prove that

    [tex] Using \: binomial \: theorem, \: prove \: that\: \\ 3 {}^{2n + 2 \: } – \: 8x \: – \: 9 \: is \: divisble \: by \: 64.[/tex]

    Answer:

    Solution:-

    Let p (x) =

    [tex]3 {}^{2n + 2} \: – 8x \: – \: 9 \: is \: divisble \: by \: 64 \\ [/tex]

    [tex]when \: put \: n \: = \: 1 \\ [/tex]

    [tex]p \: (1) = \: 3 {}^{4} \: – 8 \: – 9 = \: 64[/tex]

    Let n = k and we get,

    [tex]p \: (k) \: = \: 3 {}^{2k + 2} \: – \: 8k \: – 9 \: divisble \: by \: 64[/tex]

    [tex]3 {}^{2k + 2} \: – 8k \: – 9 \: = \: 64m \: \: \: \: when \: m \: =N\\ [/tex]

    [tex]now \: we \: shall \: prove \: that \: p {}^{k + 1} is \: also \: true[/tex]

    [tex]p \: (k + 1) \: = \: 3 {}^{2(k + 1) + 2} \: – 8(k + 1) – 9 \: is \\ divisble \: by \: 64[/tex]

    Now,

    [tex]p(k + 1) = \: 3 {}^{2(k + 1) + 2} – 8(k + 1) \: – 9 = 3 {}^{2} .3 {}^{2k + 2} – 8k \: – 17[/tex]

    [tex] = \: 9.3 {}^{2k + 2} – 8k – 17[/tex]

    [tex] = \: 9(64m + 8k + 9) \: – 8k \: – 17[/tex]

    [tex] = 9.64m \: 72k + 81 – 8k – 17[/tex]

    [tex] = 9.64m + 64k + 64[/tex]

    [tex] = 64(9m + k + 1)[/tex] which is disability by 64.

    Thus, p (k+1) is true whenever p(k) is true.

    Hence, by principle mathematical induction,

    px is true for all natural number.

    Reply

Leave a Comment