If α, β are the zeros of the polynomial f(x) = x2 + x + 1, then 1 /a + 1 /b= ……. a) 1 b) -1 c) 0d) None of these About the author Jade
Answer: Step-by-step explanation: Given [tex]\alpha and\beta[/tex] are the roots of Polynomial f(x)=x^2+x+1 where (a=1 , b=1 , c=1) We have To find 1/[tex]\alpha[/tex] + 1/[tex]\beta[/tex]=[tex](\alpha +\beta )/\alpha \beta[/tex] . . . ..(1) And we also know that sum of roots(zeroes) of quadratic polynomial = -b/a [tex]\alpha +\beta =-b/a[/tex]=-1/1=-1 . . . .. (2) Product of roots of quadratic polynomial =c/a [tex]\alpha \beta =c/a=1/1=1[/tex] . . . . . .(3) Put the values of (2) and (3) in (1) we get -1/1=-1 ANS Reply
Answer:
Step-by-step explanation:
Given [tex]\alpha and\beta[/tex] are the roots of Polynomial f(x)=x^2+x+1 where (a=1 , b=1 , c=1)
We have To find 1/[tex]\alpha[/tex] + 1/[tex]\beta[/tex]=[tex](\alpha +\beta )/\alpha \beta[/tex] . . . ..(1)
And we also know that sum of roots(zeroes) of quadratic polynomial = -b/a
[tex]\alpha +\beta =-b/a[/tex]=-1/1=-1 . . . .. (2)
Product of roots of quadratic polynomial =c/a
[tex]\alpha \beta =c/a=1/1=1[/tex] . . . . . .(3)
Put the values of (2) and (3) in (1)
we get
-1/1=-1 ANS