Prove that :
[tex]\sf{\dfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}= sec\theta+tan\theta=\dfrac{1+sin\theta}{cos\theta}[/tex]
General Instructions :
Don’t Spam ❌ . Spammers will be reported
Use G00GLE for answering but answer should be correct .
Answer:
Step-by-step explanation:
To Prove :-
[tex]\dfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}=sec\theta+tan\theta=\dfrac{1+sin\theta}{cos\theta}[/tex]
Solution :-
Taking L.H.S :-
[tex]= \dfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}[/tex]
[tex]=\dfrac{tan\theta+sec\theta-(sec^2\theta-tan^2\theta)}{tan\theta-sec\theta+1}[/tex]
[tex]=\dfrac{tan\theta+sec\theta-((sec\theta+tan\theta)(sec\theta-tan\theta))}{tan\theta-sec\theta+1}[/tex]
[tex]=\dfrac{sec\theta+tan\theta(1-(sec\theta-tan\theta))}{tan\theta-sec\theta+1}[/tex]
[tex]=\dfrac{sec\theta+tan\theta(1-sec\theta+tan\theta)}{tan\theta-sec\theta+1}[/tex]
[tex]=sec\theta+tan\theta[/tex]
[tex]=\dfrac{1}{cos\theta}+\dfrac{sin\theta}{cos\theta}[/tex]
[tex]=\dfrac{1+sin\theta}{cos\theta}[/tex]
= R.H.S