Prove that :
[tex]\sf{\dfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}= sec\theta+tan\theta=\dfrac{1+sin\theta}{cos\thet

Prove that :
[tex]\sf{\dfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}= sec\theta+tan\theta=\dfrac{1+sin\theta}{cos\theta}[/tex]

General Instructions :
Don’t Spam ❌ . Spammers will be reported
Use G00GLE for answering but answer should be correct .

About the author
Autumn

1 thought on “Prove that :<br /> [tex]\sf{\dfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}= sec\theta+tan\theta=\dfrac{1+sin\theta}{cos\thet”

  1. Answer:

    Step-by-step explanation:

    To Prove :-

    [tex]\dfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}=sec\theta+tan\theta=\dfrac{1+sin\theta}{cos\theta}[/tex]

    Solution :-

    Taking L.H.S :-

    [tex]= \dfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}[/tex]

    [tex]=\dfrac{tan\theta+sec\theta-(sec^2\theta-tan^2\theta)}{tan\theta-sec\theta+1}[/tex]

    [tex]=\dfrac{tan\theta+sec\theta-((sec\theta+tan\theta)(sec\theta-tan\theta))}{tan\theta-sec\theta+1}[/tex]

    [tex]=\dfrac{sec\theta+tan\theta(1-(sec\theta-tan\theta))}{tan\theta-sec\theta+1}[/tex]

    [tex]=\dfrac{sec\theta+tan\theta(1-sec\theta+tan\theta)}{tan\theta-sec\theta+1}[/tex]

    [tex]=sec\theta+tan\theta[/tex]

    [tex]=\dfrac{1}{cos\theta}+\dfrac{sin\theta}{cos\theta}[/tex]

    [tex]=\dfrac{1+sin\theta}{cos\theta}[/tex]

    = R.H.S

    Reply

Leave a Comment