28) A (-4,2), B (-3,-5), C (3,-2) and D (2, k) are the vertices of a quadrilateral ABCD. If the area
of the quadrilater

By Ella

28) A (-4,2), B (-3,-5), C (3,-2) and D (2, k) are the vertices of a quadrilateral ABCD. If the area
of the quadrilateral is 28 sq. units, find the value of ‘K’.​

About the author
Ella

2 thoughts on “<br />28) A (-4,2), B (-3,-5), C (3,-2) and D (2, k) are the vertices of a quadrilateral ABCD. If the area<br />of the quadrilater”

  1. Let the points be A(4,2),B(3,5),C(3,2) and D(2,3)

    The quadrilateral ABCD can be divided into triangles ABC and ACD and hence the

    area of the quadrilateral is the sum of the areas of the two triangles.

    Area of a triangle with vertices (x

    1

    ,y

    1

    ) ; (x

    2

    ,y

    2

    ) and (x

    3

    ,y

    3

    ) is

    2

    x

    1

    (y

    2

    −y

    3

    )+x

    2

    (y

    3

    −y

    1

    )+x

    3

    (y

    1

    −y

    2

    )

    Hence, substituting the points (x

    1

    ,y

    1

    )=(−4,−2) ; (x

    2

    ,y

    2

    )=(−3,−5) and (x

    3

    ,y

    3

    )=(3,−2) in the area formula, we get

    Area of triangle ABC =

    2

    (−4)(−5+2)+(−3)(−2+2)+3(−2+5)

    =

    2

    12+0+9

    =

    2

    21

    =10.5squnits

    And, substituting the points (x

    1

    ,y

    1

    )=(−4,−2) ; (x

    2

    ,y

    2

    )=(3,−2) and (x

    3

    ,y

    3

    )=(2,3) in the area formula, we get

    Area of triangle ACD =

    2

    −4(−2−3)+(3)(3+2)+2(−2+2

    =

    2

    20+15+0

    =

    2

    35

    =17.5squnits

    Hence, Area of quadrilateral =10.5+17.5=28squnits

    Reply
  2. [tex] \huge \fbox \purple{question}[/tex]

    A (-4,2), B (-3,-5), C (3,-2) and D (2, k) are the vertices of a quadrilateral ABCD. If the area

    of the quadrilateral is 28 sq. units, find the value of ‘K’.

    .

    [tex] \huge \fbox \green{solution}[/tex]

    A (-4,2), B (-3,-5), C (3,-2), D(2,k)

    Area of triangle ABCD =

    [tex] \frac{1}{2} ( – 4( – 5 + 2) – 3( – 2 + 2) + 3( – 2 + 5)) = \frac{21}{2} [/tex]

    sq.unit

    Area of Triangle ABC=

    [tex] \frac{1}{2} ( – 4( – 2 – k) + 3(k + 2) + 2( – 2 + 2)) = \frac{(7k + 14)}{2} [/tex]

    sq unit

    Area of quadrilateral ABCD =28sq. unit

    [tex]therefore \frac{21}{2} + \frac{7k + 14}{2} = 28 \\ \frac{7k + 35}{2} = 28 \\ 7k = 21 \\ therefore \: k = 3 [/tex]

    hope this helps u..

    Reply

Leave a Comment