if the circumference of the base of cylinder is 44cm and the sum of its radius and height is 27 cm, find its total surface area.

if the circumference of the base of cylinder is 44cm and the sum of its radius and height is 27 cm, find its total surface area.

About the author
Bella

2 thoughts on “if the circumference of the base of cylinder is 44cm and the sum of its radius and height is 27 cm, find its total surface area.<b”

  1. Answer:

    [tex]\sf Given \begin{cases} & \sf{Circumference\:of\:the\:base\;of\:cylinder = \bf{44\:cm}} \\ & \sf{Sum\:of\:radius\:and\:height\:of\:cylinder = \bf{27\:cm}} \end{cases}\\ \\[/tex]

    To find: Total surface area of cylinder?

    ⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

    ☯ Let’s consider r and h be the radius and height of cylinder respectively.

    ⠀⠀⠀⠀

    [tex]\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\[/tex]

    [tex]\star\;{\boxed{\sf{\pink{Circumference_{\;(circle)} = 2 \pi r}}}}\\ \\[/tex]

    [tex]:\implies\sf 2 \times \dfrac{22}{7} \times r = 44 \\ \\[/tex]

    [tex]:\implies\sf \dfrac{44}{7} \times r = 44\\ \\[/tex]

    [tex]:\implies\sf r = \cancel{44} \times \dfrac{7}{ \cancel{44}}\\ \\[/tex]

    [tex]:\implies{\underline{\boxed{\frak{\purple{r = 7\:cm}}}}}\;\bigstar\\ \\[/tex]

    [tex]\therefore\:{\underline{\sf{Radius\:of\:cylinder\:is\: {\textsf{\textbf{7\:cm}}}.}}}[/tex]

    ⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

    [tex]\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\[/tex]

    Sum of radius and height of cylinder is 27 cm.

    ⠀⠀⠀⠀

    [tex]:\implies\sf r + h = 27\\ \\[/tex]

    [tex]:\implies\sf 7 + h = 27\\ \\[/tex]

    [tex]:\implies\sf h = 27 – 7\\ \\[/tex]

    [tex]:\implies{\underline{\boxed{\frak{\purple{h = 20\:cm}}}}}\;\bigstar\\ \\[/tex]

    [tex]\therefore\:{\underline{\sf{Height\:of\:cylinder\:is\: {\textsf{\textbf{20\:cm}}}.}}}[/tex]

    ⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

    ☯ Now, Finding Curved surface area of cylinder,

    ⠀⠀⠀

    [tex]\star\;{\boxed{\sf{\pink{Total\:surface\:area_{\;(rectangle)} = 2 \pi r(r + h)}}}}\\ \\[/tex]

    [tex]:\implies\sf 2 \times \dfrac{22}{ \cancel{7}} \times \cancel{7} \bigg( 7 + 20 \bigg)\\ \\[/tex]

    [tex]:\implies\sf 2 \times 22 \times 27\\ \\[/tex]

    [tex]:\implies{\underline{\boxed{\frak{\purple{1188\:cm^2}}}}}\;\bigstar\\ \\[/tex]

    [tex]\therefore\:{\underline{\sf{Total\:surface\:area\:of\:cylinder\:is\: \bf{1188\:cm^2}.}}}[/tex]

    Reply
  2. Answer:

    [tex]\huge{\tt{\red{}\green{A}\purple{N}\pink{S}\blue{W}\orange{E}\red{R}}}[/tex]

    [tex]

    ⠀⠀⠀

    \begin{gathered}\star\;{\boxed{\sf{\pink{Total\:surface\:area_{\;(rectangle)} = 2 \pi r(r + h)}}}}\\ \\\end{gathered}[/tex]

    [tex]⋆Totalsurfacearea(rectangle)=2πr(r+h)

    [/tex]

    [tex]⟹2×722×7(7+20)

    [tex]⟹2×722×7(7+20)[/tex]

    [tex]⟹2×22×27

    [tex]⟹2×22×27[/tex]

    [tex]\begin{gathered}:\implies{\underline{\boxed{\frak{\purple{1188\:cm^2}}}}}\;\bigstar\\ \\\end{gathered}[/tex]

    [tex]:⟹1188cm2★

    [tex]:⟹1188cm2★[/tex]

    [tex]\therefore\:{\underline{\sf{Total\:surface\:area\:of\:cylinder\:is\: \bf{1188\:cm^2}.}}}∴Totalsurfaceareaofcylinderis1188cm2.

    [tex]\therefore\:{\underline{\sf{Total\:surface\:area\:of\:cylinder\:is\: \bf{1188\:cm^2}.}}}∴Totalsurfaceareaofcylinderis1188cm2.[/tex]

    Reply

Leave a Comment