3. The volume of a cuboidal box isx’ + 14x’ + 52x + 21 cubic units. Its height isx + 7 units. What isits base area? no spam 100% report him guys f. Ollw me for more question and drop me some thanks About the author Harper
Step-by-step explanation: Length of cuboid = (2x + 2) units ★ Breadth of cuboid = (2x – 2) units ➪Height of cuboid = (2x – 2) units ➪Volume of cuboid is [tex]✵\sf\begin{gathered} Volume = Length \times Breadth \times Height\\\\ Volume = (\,2x + 2)\, \times (\,2x – 2)\, \times (\,2x – 2)\,\\\\ Volume = (\,(\,2x)\,^2 – (\,2)\,^2)\ \times (\,2x – 2)\,\\\\ Volume = (\,4x^2 – 4)\, \times (\,2x – 2)\, \\\\ Volume = 8x^3 – 8x^2 – 8x + 8\end{gathered}[/tex] Reply
Answer: Step-by-step explanation: Length of cuboid = (2x + 2) units ★ Breadth of cuboid = (2x – 2) units ➪Height of cuboid = (2x – 2) units ➪Volume of cuboid is \begin{gathered}✵\sf\begin{gathered} Volume = Length \times Breadth \times Height\\\\ Volume = (\,2x + 2)\, \times (\,2x – 2)\, \times (\,2x – 2)\,\\\\ Volume = (\,(\,2x)\,^2 – (\,2)\,^2)\ \times (\,2x – 2)\,\\\\ Volume = (\,4x^2 – 4)\, \times (\,2x – 2)\, \\\\ Volume = 8x^3 – 8x^2 – 8x + 8\end{gathered}\end{gathered} ✵ Volume=Length×Breadth×Height Volume=(2x+2)×(2x−2)×(2x−2) Volume=((2x) 2 −(2) 2 ) ×(2x−2) Volume=(4x 2 −4)×(2x−2) Volume=8x 3 −8x 2 −8x+8 Reply
Step-by-step explanation:
★
➪Height of cuboid = (2x – 2) units
➪Volume of cuboid is
[tex]✵\sf\begin{gathered} Volume = Length \times Breadth \times Height\\\\ Volume = (\,2x + 2)\, \times (\,2x – 2)\, \times (\,2x – 2)\,\\\\ Volume = (\,(\,2x)\,^2 – (\,2)\,^2)\ \times (\,2x – 2)\,\\\\ Volume = (\,4x^2 – 4)\, \times (\,2x – 2)\, \\\\ Volume = 8x^3 – 8x^2 – 8x + 8\end{gathered}[/tex]
Answer:
Step-by-step explanation:
Length of cuboid = (2x + 2) units
★
Breadth of cuboid = (2x – 2) units
➪Height of cuboid = (2x – 2) units
➪Volume of cuboid is
\begin{gathered}✵\sf\begin{gathered} Volume = Length \times Breadth \times Height\\\\ Volume = (\,2x + 2)\, \times (\,2x – 2)\, \times (\,2x – 2)\,\\\\ Volume = (\,(\,2x)\,^2 – (\,2)\,^2)\ \times (\,2x – 2)\,\\\\ Volume = (\,4x^2 – 4)\, \times (\,2x – 2)\, \\\\ Volume = 8x^3 – 8x^2 – 8x + 8\end{gathered}\end{gathered}
✵
Volume=Length×Breadth×Height
Volume=(2x+2)×(2x−2)×(2x−2)
Volume=((2x)
2
−(2)
2
) ×(2x−2)
Volume=(4x
2
−4)×(2x−2)
Volume=8x
3
−8x
2
−8x+8