Step-by-step explanation: [tex] {x}^{3} – 3 {x}^{2} + x + 1 \\ \alpha = a – b \: , \: \beta =a \: , \: \gamma =a+b \\ sum \: of \: zeroes: \\ \alpha + \beta + \gamma = \frac{-b}{a} \\ (a-b) + a + (a+b)=\frac{-b}{a} \\ 3a = \frac{ – b}{a} \\ {a}^{2} = \frac{ – b}{3} \\ {a}^{2} = \frac{ – ( – 3)}{3} \\ {a}^{2} = 1[/tex] HOPE THIS HELPS MARK ME BRAINLIEST Reply
Step-by-step explanation: Correct option is D a=0,b=−6 x 2 +(a+1)x+b is the quadratic polynomial. 2 and −3 are the zeros of the quadratic polynomial. Thus, 2+(−3)= 1 −(a+1) => 1 (a+1) =1 =>a+1=1 =>a=0 Also, 2×(−3)=b =>b=−6 Reply
Step-by-step explanation:
[tex] {x}^{3} – 3 {x}^{2} + x + 1 \\ \alpha = a – b \: , \: \beta =a \: , \: \gamma =a+b \\ sum \: of \: zeroes: \\ \alpha + \beta + \gamma = \frac{-b}{a} \\ (a-b) + a + (a+b)=\frac{-b}{a} \\ 3a = \frac{ – b}{a} \\ {a}^{2} = \frac{ – b}{3} \\ {a}^{2} = \frac{ – ( – 3)}{3} \\ {a}^{2} = 1[/tex]
HOPE THIS HELPS
MARK ME BRAINLIEST
Step-by-step explanation:
Correct option is
D
a=0,b=−6
x
2
+(a+1)x+b is the quadratic polynomial.
2 and −3 are the zeros of the quadratic polynomial.
Thus, 2+(−3)=
1
−(a+1)
=>
1
(a+1)
=1
=>a+1=1
=>a=0
Also, 2×(−3)=b
=>b=−6