If tanA = 30°, prove that[tex] \tan2a = \frac{2 \tan a }{1 – { \tan}^{2} a} [/tex] About the author Genesis
A=30⇒2A=60 tan2A=1−tan2A2tanA. A=30 degrees Show that: tan60∘=1−tan230∘2tan30∘ RHS: 1−tan230∘2tan30∘=1−312×31=2/32/3 =3/3 Reply
Answer:
The answer for the sum is 3/3
A=30⇒2A=60
tan2A=1−tan2A2tanA.
A=30 degrees
Show that:
tan60∘=1−tan230∘2tan30∘
RHS:
1−tan230∘2tan30∘=1−312×31=2/32/3
=3/3