[tex]\large\underline{\sf{Solution-}}[/tex] Given matrix is [tex]\rm :\longmapsto\:\begin{gathered}\sf A=\left[\begin{array}{ccc}1&2&3\\0&2&4\\0&0&5\end{array}\right]\end{gathered}[/tex] We know that, [tex]\red{\rm :\longmapsto\:A = IA}[/tex] [tex]\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&2&3\\0&2&4\\0&0&5\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]\end{gathered}A[/tex] [tex]\red{\rm :\longmapsto\:OP \: R_1 \: \to \:R_1 – R_2}[/tex] [tex]\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0& – 1\\0&2&4\\0&0&5\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1& – 1&0\\0&1&0\\0&0&1\end{array}\right]\end{gathered}A[/tex] [tex]\red{\rm :\longmapsto\:OP \: R_2 \: \to \: \dfrac{1}{2}R_2} [/tex] [tex]\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0& – 1\\0&1&2\\0&0&5\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1& – 1&0\\0& \dfrac{1}{2} &0\\0&0&1\end{array}\right]\end{gathered}A[/tex] [tex]\red{\rm :\longmapsto\:OP \: R_3 \: \to \: \dfrac{1}{5}R_3} [/tex] [tex]\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0& – 1\\0&1&2\\0&0&1\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1& – 1&0\\0& \dfrac{1}{2} &0\\0&0 & \dfrac{1}{5} \end{array}\right]\end{gathered}A[/tex] [tex]\red{\rm :\longmapsto\:OP \: R_2 \: \to \:R_2 – 2R_3}[/tex] [tex]\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0& – 1\\0&1&0\\0&0&1\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1& – 1&0\\0& \dfrac{1}{2} & – \dfrac{2}{5} \\0&0 & \dfrac{1}{5} \end{array}\right]\end{gathered}A[/tex] [tex]\red{\rm :\longmapsto\:OP \: R_1 \: \to \:R_1 + R_3}[/tex] [tex]\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1& – 1& \dfrac{1}{5} \\0& \dfrac{1}{2} & – \dfrac{2}{5} \\0&0 & \dfrac{1}{5} \end{array}\right]\end{gathered}A[/tex] [tex]\bf\implies \:A {A}^{ – 1} = I[/tex] Hence, [tex]\bf\implies \: {A}^{ – 1} = \begin{gathered}\sf\left[\begin{array}{ccc}1& – 1& \dfrac{1}{5} \\0& \dfrac{1}{2} & – \dfrac{2}{5} \\0&0 & \dfrac{1}{5} \end{array}\right]\end{gathered}[/tex] Reply
[tex]\large\underline{\sf{Solution-}}[/tex]
Given matrix is
[tex]\rm :\longmapsto\:\begin{gathered}\sf A=\left[\begin{array}{ccc}1&2&3\\0&2&4\\0&0&5\end{array}\right]\end{gathered}[/tex]
We know that,
[tex]\red{\rm :\longmapsto\:A = IA}[/tex]
[tex]\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&2&3\\0&2&4\\0&0&5\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]\end{gathered}A[/tex]
[tex]\red{\rm :\longmapsto\:OP \: R_1 \: \to \:R_1 – R_2}[/tex]
[tex]\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0& – 1\\0&2&4\\0&0&5\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1& – 1&0\\0&1&0\\0&0&1\end{array}\right]\end{gathered}A[/tex]
[tex]\red{\rm :\longmapsto\:OP \: R_2 \: \to \: \dfrac{1}{2}R_2} [/tex]
[tex]\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0& – 1\\0&1&2\\0&0&5\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1& – 1&0\\0& \dfrac{1}{2} &0\\0&0&1\end{array}\right]\end{gathered}A[/tex]
[tex]\red{\rm :\longmapsto\:OP \: R_3 \: \to \: \dfrac{1}{5}R_3} [/tex]
[tex]\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0& – 1\\0&1&2\\0&0&1\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1& – 1&0\\0& \dfrac{1}{2} &0\\0&0 & \dfrac{1}{5} \end{array}\right]\end{gathered}A[/tex]
[tex]\red{\rm :\longmapsto\:OP \: R_2 \: \to \:R_2 – 2R_3}[/tex]
[tex]\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0& – 1\\0&1&0\\0&0&1\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1& – 1&0\\0& \dfrac{1}{2} & – \dfrac{2}{5} \\0&0 & \dfrac{1}{5} \end{array}\right]\end{gathered}A[/tex]
[tex]\red{\rm :\longmapsto\:OP \: R_1 \: \to \:R_1 + R_3}[/tex]
[tex]\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1& – 1& \dfrac{1}{5} \\0& \dfrac{1}{2} & – \dfrac{2}{5} \\0&0 & \dfrac{1}{5} \end{array}\right]\end{gathered}A[/tex]
[tex]\bf\implies \:A {A}^{ – 1} = I[/tex]
Hence,
[tex]\bf\implies \: {A}^{ – 1} = \begin{gathered}\sf\left[\begin{array}{ccc}1& – 1& \dfrac{1}{5} \\0& \dfrac{1}{2} & – \dfrac{2}{5} \\0&0 & \dfrac{1}{5} \end{array}\right]\end{gathered}[/tex]