[tex]\large\underline{\sf{Solution-}}[/tex] Given pair of linear equations are [tex]\rm :\longmapsto\:u + 3v = 2 – – – (1)[/tex] and [tex]\rm :\longmapsto\:3u + \dfrac{2}{3}v = 1 [/tex] can be rewritten as [tex]\rm :\longmapsto\:\dfrac{9u + 2v}{3} = 1 [/tex] [tex]\rm :\longmapsto\:9u + 2v = 3 – – (2)[/tex] Using Cross Multiplication method [tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \begin{gathered} \begin{array}{|c|c|c|c|} \bf{2} & \bf{3}& \bf{1}& \bf{2} \\ \\ 3&2&1& 3\\ \\2&3&9&2\end{array}\end{gathered}[/tex] [tex]\rm :\longmapsto\:\dfrac{u}{9 – 4} = \dfrac{v}{18 – 3} = \dfrac{ – 1}{2 – 27} [/tex] [tex]\rm :\longmapsto\:\dfrac{u}{5} = \dfrac{v}{15} = \dfrac{ – 1}{ – 25} [/tex] [tex]\rm :\longmapsto\:\dfrac{u}{5} = \dfrac{v}{15} = \dfrac{1}{25} [/tex] On taking first and third member, we have [tex]\rm :\longmapsto\:\dfrac{u}{5} = \dfrac{1}{25} [/tex] [tex]\bf\implies \:u = \dfrac{1}{5} [/tex] On taking second and third member, we have [tex]\rm :\longmapsto\: \dfrac{v}{15} = \dfrac{1}{25} [/tex] [tex]\bf\implies \:v = \dfrac{3}{5} [/tex] Additional Information :- There are 4 methods to solve this type of pair of linear equations. 1. Method of Substitution 2. Method of Eliminations 3. Method of Cross Multiplication 4. Graphical Method Reply
[tex]\large\underline{\sf{Solution-}}[/tex]
Given pair of linear equations are
[tex]\rm :\longmapsto\:u + 3v = 2 – – – (1)[/tex]
and
[tex]\rm :\longmapsto\:3u + \dfrac{2}{3}v = 1 [/tex]
can be rewritten as
[tex]\rm :\longmapsto\:\dfrac{9u + 2v}{3} = 1 [/tex]
[tex]\rm :\longmapsto\:9u + 2v = 3 – – (2)[/tex]
Using Cross Multiplication method
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \begin{gathered} \begin{array}{|c|c|c|c|} \bf{2} & \bf{3}& \bf{1}& \bf{2} \\ \\ 3&2&1& 3\\ \\2&3&9&2\end{array}\end{gathered}[/tex]
[tex]\rm :\longmapsto\:\dfrac{u}{9 – 4} = \dfrac{v}{18 – 3} = \dfrac{ – 1}{2 – 27} [/tex]
[tex]\rm :\longmapsto\:\dfrac{u}{5} = \dfrac{v}{15} = \dfrac{ – 1}{ – 25} [/tex]
[tex]\rm :\longmapsto\:\dfrac{u}{5} = \dfrac{v}{15} = \dfrac{1}{25} [/tex]
On taking first and third member, we have
[tex]\rm :\longmapsto\:\dfrac{u}{5} = \dfrac{1}{25} [/tex]
[tex]\bf\implies \:u = \dfrac{1}{5} [/tex]
On taking second and third member, we have
[tex]\rm :\longmapsto\: \dfrac{v}{15} = \dfrac{1}{25} [/tex]
[tex]\bf\implies \:v = \dfrac{3}{5} [/tex]
Additional Information :-
There are 4 methods to solve this type of pair of linear equations.