Q. (2)Find the Equations of the tangents to the circle x2 + y2 = 9which areparallel and perpendicular tox + 3y – 3 = 0. About the author Eden
Answer: y=mx+c is tangent to a circle x 2 +y 2 =9 if c 2 =9(m 2 +1) Given tangent is parallel to y= 4 −3x + 2 1 ⇒m= 4 −3 ∴c 2 =9( 16 9 +1) = 16 9×25 c=± 4 3×5 =± 4 15 ∴ Tangents required : y= 4 −3x ± 4 15 ⇒4y+3x=±15 Reply
Step-by-step explanation: y=mx+c is tangent to a circle x 2 +y 2 =9 if c 2 =9(m 2 +1) Given tangent is parallel to y= 4 −3x + 2 1 ⇒m= 4 −3 ∴c 2 =9( 16 9 +1) = 16 9×25 c=± 4 3×5 =± 4 15 ∴ Tangents required : y= 4 −3x ± 4 15 ⇒4y+3x=±15 Reply
Answer:
y=mx+c is tangent to a circle x
2
+y
2
=9
if c
2
=9(m
2
+1)
Given tangent is parallel to y=
4
−3x
+
2
1
⇒m=
4
−3
∴c
2
=9(
16
9
+1)
=
16
9×25
c=±
4
3×5
=±
4
15
∴ Tangents required :
y=
4
−3x
±
4
15
⇒4y+3x=±15
Step-by-step explanation:
y=mx+c is tangent to a circle x
2
+y
2
=9
if c
2
=9(m
2
+1)
Given tangent is parallel to y=
4
−3x
+
2
1
⇒m=
4
−3
∴c
2
=9(
16
9
+1)
=
16
9×25
c=±
4
3×5
=±
4
15
∴ Tangents required :
y=
4
−3x
±
4
15
⇒4y+3x=±15