An 150 scales triangle has perimeter 30cm and each of the equal sides is 12cm. Find the area of the triangle. About the author Josie
Perimeter of isosceles triangle=30cm Length of equal sides=12cm Let third side of triangle=xcm According to problem, x+12+12=30 x+24=30 x=30−24 x=6 ∴ Third side of triangle=6cm Using Heron’s formula [tex]area \: of \: traingle = \sqrt{s(s – a)(s – b)(s – c)} sq \: units[/tex] where a+b+c/2 s = 30 / 2 = 15 [tex]area \: of \: triangle \: \sqrt{15(15 – 12)(15 – 12)(15 – 6)cm } \\ \sqrt{15 \times 3 \times 3 \times 9cm ^{2} } \\ 3 \times 3 \times \sqrt{15cm^{2} } \\ = 9 \sqrt{15cm ^{2} } \\ area \: of \: triangle \: = 9 \sqrt{15cm ^{2} } [/tex] Reply
Perimeter of isosceles triangle=30cm
Length of equal sides=12cm
Let third side of triangle=xcm
According to problem,
x+12+12=30
x+24=30
x=30−24
x=6
∴ Third side of triangle=6cm
Using Heron’s formula
[tex]area \: of \: traingle = \sqrt{s(s – a)(s – b)(s – c)} sq \: units[/tex]
where a+b+c/2
s = 30 / 2 = 15
[tex]area \: of \: triangle \: \sqrt{15(15 – 12)(15 – 12)(15 – 6)cm } \\ \sqrt{15 \times 3 \times 3 \times 9cm ^{2} } \\ 3 \times 3 \times \sqrt{15cm^{2} } \\ = 9 \sqrt{15cm ^{2} } \\ area \: of \: triangle \: = 9 \sqrt{15cm ^{2} } [/tex]
Answer:
apne ghar pr hoon
tum chahte ho ki mein koi question puchu
if yes then only thanks me