prove that :[tex]cot \alpha + tan \alpha = cosec \alpha \times sec \alpha [/tex] About the author Melody
[tex]\huge\mathfrak\red{Given:-}[/tex] [tex]cot \alpha + tan \alpha = cosec \alpha \times sec \alpha [/tex] [tex]\huge\mathcal\blue{Solution:-}[/tex] [tex]\huge\mathcal\red{Iñ \: LHS:-}[/tex] ➡[tex]cot \alpha + tan \alpha[/tex] ➡[tex]cot \alpha = \text{$\frac{cos \alpha}{sin \alpha}$}[/tex] ➡[tex]tan \alpha = \text{$\frac{sin \alpha}{cos \alpha}$}[/tex] ➡[tex]\text{$\frac{cos^2 \alpha + sin^2 \alpha}{sin \alpha cos \alpha}$}[/tex] ➡[tex]cos ^2\alpha + sin^2\alpha = 1[/tex] ➡[tex]\text{$\frac{1}{cos \alpha ×sin \alpha}$}[/tex] ➡[tex]\text{$\frac{1}{cos \alpha}$}×\text{$\frac{1}{sin \alpha}$}[/tex] ➡[tex]\text{$\frac{1}{sin \alpha}$} = cosec \alpha[/tex] and ; ➡[tex]\text{$\frac{1}{cos \alpha}$} = sec \alpha[/tex] So, ➡[tex]cosec \alpha × sec \alpha[/tex] [tex]\mathcal\red{LHS \: is \: equal \: to \: RHS}[/tex] Reply
[tex]\huge\mathfrak\red{Given:-}[/tex]
[tex]cot \alpha + tan \alpha = cosec \alpha \times sec \alpha [/tex]
[tex]\huge\mathcal\blue{Solution:-}[/tex]
[tex]\huge\mathcal\red{Iñ \: LHS:-}[/tex]
➡[tex]cot \alpha + tan \alpha[/tex]
➡[tex]cot \alpha = \text{$\frac{cos \alpha}{sin \alpha}$}[/tex]
➡[tex]tan \alpha = \text{$\frac{sin \alpha}{cos \alpha}$}[/tex]
➡[tex]\text{$\frac{cos^2 \alpha + sin^2 \alpha}{sin \alpha cos \alpha}$}[/tex]
➡[tex]cos ^2\alpha + sin^2\alpha = 1[/tex]
➡[tex]\text{$\frac{1}{cos \alpha ×sin \alpha}$}[/tex]
➡[tex]\text{$\frac{1}{cos \alpha}$}×\text{$\frac{1}{sin \alpha}$}[/tex]
➡[tex]\text{$\frac{1}{sin \alpha}$} = cosec \alpha[/tex]
and ;
➡[tex]\text{$\frac{1}{cos \alpha}$} = sec \alpha[/tex]
So,
➡[tex]cosec \alpha × sec \alpha[/tex]
[tex]\mathcal\red{LHS \: is \: equal \: to \: RHS}[/tex]